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Horse &
Hardware

Defined
Vehicles
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» Challenge 1898: Growing crisis posed
by urban horses & their output

» London 1900: > 50.000 horses

» London Times 1894: in 50 years streets
buried under 9 feet of manure

“If | had asked people what they wanted,

they would have said faster horses.”
Henry Ford

» Attacks on HW:

» Steal vehicle; Speedometer
manipulation




Software Defined Vehicles

100 Mio lines of code
CAN replaced by Automotive Eth.

Growing network dependency V2X

vV v v v

Plug to Charge & Billing

“Once you add a Web browser to a car, It's over,”
Charlie Miller, Black Hat 2014
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Transportation & Mobility as a Service

» Al decision making proesses
» Safety by V2X Collaboration

» System of Systems Infrastructure 1 t é
“Data can be converted into information
that fuels human and Al decision-making processes, n

which in turn enable self-driving cars, ...”
George Firican, 2019
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A whitepaper from Trend Micro derived a
generic attack chain from four attacks:
Jeep hack of 2015, TESLA hacks of 2016
and 2017, and BMW hack of 2018.

Some steps also match other attacks such
as a hack on KIA Cee’d head unit in 2020,
and the TBONE Tesla hack 2021.

Step 9 could be detected and reported by
a network-based IDS.

The NIDS can be part of cooperative in-
vehicle IDS (cf. AUTOSAR) comprising IDS
manager, IDS reporter as well as NIDS and
HIDS instances.
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Figure based on: Numaan Huq, Craig Gibson, and Rainer Vosseler. Driving Security Into
Connected Cars: Threat Model and Recommendations. Trend Micro Research, 2020.



UN Regulations

UN Regulation No. 155:

Uniform provisions concerning the approval of vehicles with
regards to cyber security and cyber security management system

» Demonstrate that supplier-related risks are identified and are managed.
Document risks assessment, test results and mitigations applied to the vehicle type.
Implement appropriate cyber security measures in the design of the vehicle type.

Detect and respond to possible cyber security attacks.

vV v v v

Log data to support the detection of cyber-attacks and provide data forensic capability.

UN Regulation No. 156:

Uniform provisions concerning the approval of vehicles with regards to software update
and software updates management system
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Attack Surface Assessment for Cybersecurity Engineering in the Automotive Domain, PDP2021
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Unsupervised
Anomaly Detection

Identify instances that fit least to
the remainder

Automatic identification of unknown
anomalies

Adaptation to different systems
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Supervised
Anomaly/Attack
Detection

Extract features that differentiate
labelled data

Learning set must be prepared

Different types of anomalies/attacks



Normal: item lies on its back
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Specification-based
Detection

Construct a model for normal behavior

Traceability of classification

Specify model of abnormal behavior

Mapping of anomalies
to attacks, e.g. signature-based



sensor data is sent
every 100ms
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Behavior-based
Anomaly Detection

Set of possible sequences of actions

Identify missing events

Identify attack patterns



Application Scenario & Datasets

» Renault ZOE
» Urban driving, >1 million messages
» Artificially introduced intrusions
» Fuzzing & DoS intrusions
» Spoofing Speedometer & RPM values

» Model X

» Urban driving, 2.5 million messages
» Synthetic fuzzing attack

» HCRL Car Hacking

» Open Access, ~4 million messages
» Spoofing attacks on driving gear & RPM
» https://ocslab.hksecurity.net/Datasets/CAN-intrusion-dataset

» ORNL

» Open access, actively driven on dynamometer
» 33 attack captures

» https://0xsam.com/road/
Roland Rieke, STRIVE2021

CAN field strug



https://ocslab.hksecurity.net/Datasets/CAN-intrusion-dataset

Intrusion Design

e Denial of Service (U/DoS)

« Insertion of messages with all zero payload

mmmeel FUZZINg (U/Fuzzy)

« Insertion of messages with randomized payload

Spoofing of Revolutions per Minute (U/RPM_LEFT)

« Set values for the revolutions per minute to zero for only the left frontal wheel
« Can be detected by finding correlation to right frontal wheel

mmmm OPOOfing of Speedometer (U/SPEED)

« Set values for speedometer to zero
« Can be detected by observing changes in vehicles travelled distance value

Roland Rieke, STRIVE2021




Genetic Programming Workflow

/ Genetic Programming Training
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. Artificial neural networks (ANN)

Characteristic Functions (CF)

. Genetic Programming (GP)
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Genetic Programming and other Approaches

Implementation with Tensorflow

Binary classification

Designed to be small and fast in embedded environment
Limited insight in decision

Rule-based Intrusion Detection System
Designed for embedded systems

Fast

Explainable

GP models may prove to be ...

» ... dynamically adaptable to new situations

» ... more comprehensive for humans

» ... able to find complex relations within data




Genetic Programming (GP)

e Fast, but inferior at DoS Intrusions

» U/Speed shows capability of detecting complex
relations

Results from Selected Approaches

GP-FC GP-BA ANN-BA CF-BA
Log file ACC PPV TPR ACC PPV TPR ACC PPV TPR ACC PPV TPR

Characteristic Functions (CF)

e Fast, excels at DoS intrusions

Artificial Neural Networks (ANN)

e Solid results for DoS, but complex relations are
often disregarded

e High performance requirements

U/Fuzzy’ 952 769 994 990 982 958 .999 .999 1 1 1 1
U/Dos’ 921 946 528 .905 .625 1 941 986 .634 .999 .997 997
U/RPM_LEFT .914 800 115 998 980 1 984 998 826 .839 366 1
U/Fuzzy” 981 963 2999 995 997 992 .999 1 999 1 il 1
U/DoS” .499 201 012 904 834 1 942 986 1 1 1 3 |
U/SPEED” 957 716 894 906 0 0 906 4 0 .186 0 0
Model_X 1 1 1 998 998 .994

HCRL/RPM 901 892 it 910 891 1 Not measured Not measured
HCRL/Gear | .912 901 1 914 .897 1
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Florian Fenzl, Roland Rieke, Andreas Dominik: In-vehicle detection of targeted CAN bus attacks, ARES2021.

Spoofing of Revolutions per
Minute (U/RPM_LEFT): Set

Spoofing of Speedometer

Denial of Service (U/SPEED): Set speedometer

(U/DoS): Insertion of

Fuzzing (U/Fuzzy): Insertion
of messages with
randomized payload

revolutions to O for left front
wheel; detect by correlation
to right front wheel

to 0; detect by observing
changes in vehicles
travelled distance

messages with all zero
payload




Understanding Data and Results
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Y. Chavalier; F. Fenzl, M. Kolomeets, R. Rieke, A. Chechulin, C. KrauB3: Cyberattack detection in vehicles using characteristic functions
artificial neural networks and visual analysis, Journal of Informatics and Automation (SPIIRAS Proceedings), 2021
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Automotive Ethernet

DolP: Diagnostics over Internet Protocol

SOME/IP: Scalable Service-Oriented
Middleware over IP

Roland Rieke, STRIVE2021

D. Zelle, T. Lauser, D. Kern, C. KrauB: Analyzing and Securing SOME/IP Automotive Services with Formal and Practical Methods, ARES 2021 best paper.
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Hybrid ML for Rule Generation

Rule-based Detector

e main component active in detecting attacks

Rule Generator

e reates reliable and traceable rules for the rule-
based detector based on shallow ML techniques

Anomaly Detector

o extends the data set available to the rule
generator

Traffic Logger

. recqrds all traffic within the operating
roland Ricke, sTRERAVIFONMENt




Security

Evaluation
Platform

Mostly harmless

Distributed
collaborative IDPS

» Test security by design
(TPM)

» Evaluate
new Automotive
Ethernet protocols

» Forensic

Roland Rieke, STRIVE2021
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Integration into Edge-enabled Information Sharing,
Analysis and Protection Framework e
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"Format™

"I *3
"DetectTim
"Category":
"Description”:
7 "Confidence": 0.86,
Challenge: Transfer results into actionable reports g TR
18 "Proto™: ["can"],
"Spoofed”: true
"ASN": 768
}
1,
IDS > Cloud S
‘ Event Reporting API ) 1
Edge
IDS-Reporting IDEA STIX AUTOSAR
IDS Protocol
- _/

IDEA (Intrusion Detection Extensible Alert)

STIX (Structured Threat Information eXpression)
AUTOSAR IDS Protocol
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https://www.autosar.org/fileadmin/user_upload/standards/foundation/20-11/AUTOSAR_PRS_IntrusionDetectionSystem.pdf

Future Work

Genetic Programming for IDS

» Good detection of relationships between fields
 Denial of Service results dependent on data

e Only slight improvment over ANN results

« Computationally performant during classification

Random Forest approach

e Train multiple smaller decision trees with GP
e Majority voting
» Potentially using different payload alignhments

Hybrid approach

e Characteristic functions for boundary detection
e Genetic Programming for detecting relationships
« Either in sequence or with majority voting

Roland Rieke, STRIVE2021

Genetic Deep Neural | Characterist
Programming Networks ic Functions

Detect DoS

Detect Manipulation + +

Detect Field Correlati + 0

on

Time: Training - 0 +

Classification (msg/s) + (735) - (140) (1674)

Explainability & +
actionable reports




“One employs it (ML) not to ultimately detect malicious activity, but
rather to understand the significance of the different features of
benign and malicious activity, which then eventually serve as the basis

for a non-machine-learning detector.” Robin Sommer; Vern Paxson
Feature engineering (abstract view)
. . L. . Feature
Feature Conf]gurat]on (Opt]mlzat]on) Internal Extraction Neural Network IDS Feedback/
Data State (Cloud) Adaption
Privacy preserving edge monitoring Y
[~

ML training (ANN / LSTM)
ML-based classification (SoS level)

Feedback adaptation

ML supported rule engineering (decision
tree / genetic programming)

Rule/Model transfer to edge ) ———
ule-based classificatio ™ Fomture —>| y|—> e
Semantic interpretation and reporting _‘ Engineering Rule il AR B ER

Engineering Ryle-based Classifier
(Edge Node)
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