

Real-Time Driver Behaviour Characterization through Rule-based Machine Learning

Fabio Martinelli^{*}, <u>Francesco Mercaldo^{*}</u>, Vittoria Nardone+, Antonella Santone§, Gigliola Vaglini[^]

*Istituto di Informatica e Telematica, Consiglio Nazionale delle Ricerche (CNR) , Pisa, Italy

+Department of Engineering, University of Sannio, Benevento, Italy \$Department of Bioscience and Territory, University of Molise, Pesche (IS), Italy ^Department of Information Engineering, University of Pisa, Pisa, Italy {fabio.martinelli, francesco.mercaldo}@iit.cnr.it, vnardone@unisannio.it, antonella.santone@unimol.it, gigliola.vaglini@unipi.it

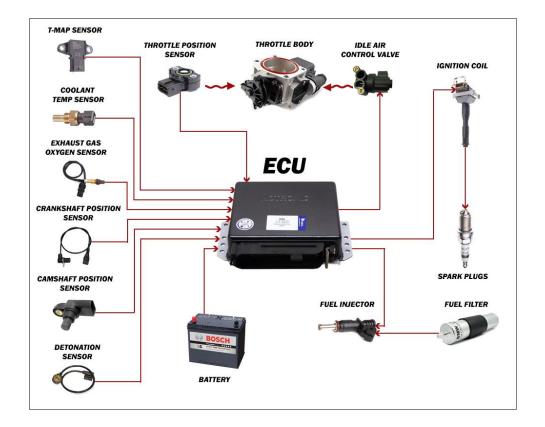
Outline

- **1.** Motivation and Background
- 2. The Real-Time Detection Method
- **3. Empirical Evaluation**
- 4. Concluding Remarks

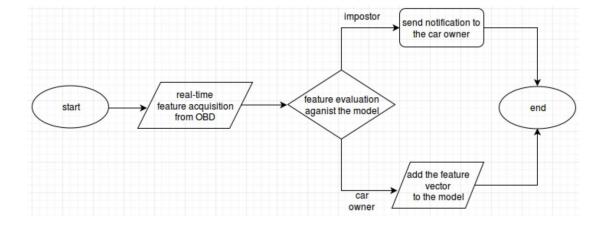
Motivation

- Modern vehicles have lots of connectivity
- Anti-theft
- New Insurance paradigms
 - Pay how you drive
- The Controller Area Network (CAN bus) is a robust vehicle bus standard designed to allow devices to communicate with each other in applications without a host computer.

Research Question:

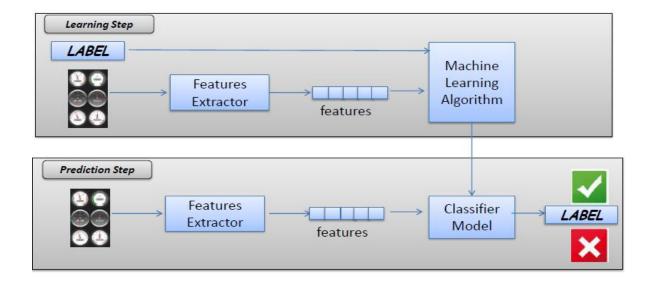

RQ: To what extent OBD II features allow driver detection?

The CAN standard



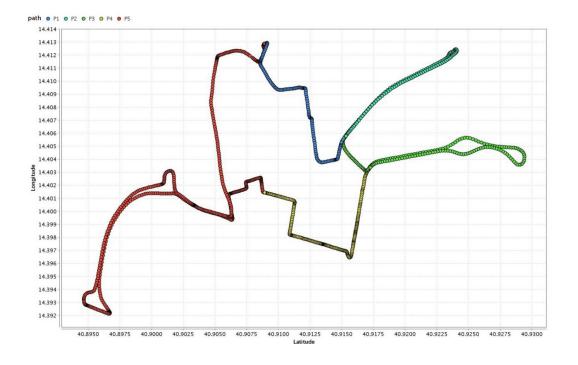
The Real-Time Detection Method

The feature vector


	e Description	Info
F1	CO_2 in g/km	(Instantaneous)(g/km)
F2	Engine $Load(\%)$	expressed in g/s
F3	Engine RPM	Revolutions per minute
F4	Fuel flow rate/minute	expressed in cc/min
F5	Fuel Remaining	expressed in liters
F6	Turbo Boost & Vacuum Gaug	e expressed in psi

The Rule-based Machine Learning Model

Feature Gathering



Dataset overview

Empirical Rules

#	Rule
 D1	$0.0 \le F1 \le 1160.24169922 \land 10.98039246 \le F2 \le 92.94117737 \land$
	$434.0 \le F3 \le 3799.75 \land 0.0 \le F4 \le 171.47810364 \land$
	$49.42653656 \le F5 \le 49.79877853 \land -12.37939644 \le F6 \le -0.19622612$
D2	$0.0 <= F1 <= 1164.5357666 \land 10.58823586 <= F2 <= 90.98039246 \land$
	$468.75 <= F3 <= 3623.0 \land 0.0 <= F4 <= 186.95175171 \land$
	$48.64160156 <= F5 <= 49.00281143 \land -12.37939644 <= F6 <= -0.19622612$
D3	$0.0 <= F1 <= 1254.05834961 \land 10.98039246 <= F2 <= 98.03921509 \land$
	$617.25 <= F3 <= 3710.0 \land 9.45204163 <= F4 <= 207.32177734 \land$
	$48.23397446 <= F5 <= 48.59840775 \land -12.23435783 <= F6 <= -0.19622612$
D4	$0.0 <= F1 <= 1088.32873535 \land 10.58823586 <= F2 <= 95.29412079 \land$
	$602.75 <= F3 <= 3205.75 \land 7.70137358 <= F4 <= 144.01383972 \land$
	$47.80204773 <= F5 <= 48.14254379 \land -12.37939644 <= F6 <= -0.19622612$
D5	$0.0 <= F1 <= 1183.73730469 \land 13.72549057 <= F2 <= 81.5686264 \land$
	$550.75 <= F3 <= 3521.5 \land 3.36647606 <= F4 <= 150.65760803 \land$
	$45.38215256 <= F5 <= 45.7795639 \land -11.79924488 <= F6 <= -1.50156593$
$\mathbf{D6}$	$0.0 <= F1 <= 1315.60339355 \land 10.58823586 <= F2 <= 92.15686798 \land$
	$586.75 <= F3 <= 3807.5 \land 0.22675589 <= F4 <= 211.76445007 \land$
	$47.37043381 <= F5 <= 47.75802994 \land -12.37939644 <= F6 <= -0.34126377$
$\mathbf{D7}$	$0.0 <= F1 <= 1073.23742676 \land 10.98039246 <= F2 <= 100.0 \land$
	$534.0 <= F3 <= 4060.0 \land 1.06496859 <= F4 <= 135.25418091 \land$
Do	$46.96563721 <= F5 <= 47.32172775 \land -12.52443409 <= F6 <= -0.34126377$
$\mathbf{D8}$	$0.0 \le F1 \le 941.16192627 \land 0.0 \le F2 \le 94.11764526 \land$
	$0.0 <= F3 <= 3415.25 \land 7.36353827 <= F4 <= 113.75313568 \land$
	$42.30183029 <= F5 <= 42.72509003 \land -11.74805641 <= F6 <= 0.0$
$\mathbf{D9}$	$0.0 <= F1 <= 1119.75854492 \land 12.94117641 <= F2 <= 93.33333588 \land$
	$715.25 \le F3 \le 3551.5 \land 12.2160759 \le F4 \le 157.69128418 \land$
$\overline{\mathbf{D10}}$	$\frac{45.93281174}{0.0} <= F5 <= 46.31466293 \land -11.94428253 <= F6 <= -0.34126377$ $0.0 <= F1 <= 1091.08703613 \land 13.33333397 <= F2 <= 90.98039246 \land$
D10	$472.0 \le F3 \le 3181.25 \land 7.24365759 \le F4 \le 163.60809326 \land$
	$46.58006668 <= F5 <= 46.93938065 \land -12.08932018 <= F6 <= -0.77637672$
	10.0000000 ~ 10 ~ 10 ~ 10.000000 / -12.000000 ~ 10 ~ -10 ~ -0.11001012

Experimental Results

\sim	-02

Driver	FP Rate	Precision	Recall	F-Measure	RocArea
D1	0	1	1	1	1
$\mathbf{D2}$	0	0.999	1	0.999	1
$\mathbf{D3}$	0	1	1	1	1
$\mathbf{D4}$	0	1	1	1	1
$\mathbf{D5}$	0	1	1	1	1
$\mathbf{D6}$	0	1	1	1	1
$\mathbf{D7}$	0	1	1	1	1
D8	0	1	1	1	1
D9	0	1	0.999	1	1
D10	0	1	1	1	1

$PR = \frac{TP}{TP + FP}; \ I$	$RC = \frac{TP}{TP + FN};$
$Fm = \frac{2PR RC}{PR + RC}; Acc =$	$\frac{TP+TN}{TP+FN+FP+TN}$

a	b	С	d	e	f	g	h	i	j	classified as
2398	0	0	0	0	0	0	0	0	0	a = D1
0	2922	0	1	0	0	0	0	0	0	b = D2
0	0	3073	0	0	0	0	0	0	0	c = D3
0	0	0	3106	0	0	0	0	0	0	d = D4
0	0	0	0	3846	0	0	0	0	0	e = D5
0	0	0	0	0	2794	0	0	0	0	f = D6
0	0	1	0	0	0	3009	0	0	0	g = D7
0	0	0	0	0	0	0	4151	0	0	h = D8
0	1	0	0	0	0	0	2	3267	0	i = D9
0	1	0	0	0	0	0	0	0	2833	j = D10

Conclusion and Future Work

- We propose a method aimed to discriminate between the car owner and impostors using a rule-based machine learning algorithm.
- We evaluated the proposed method on a dataset of 10 drivers.
- High performances in terms of precision and recall are achieved.
- We plan to investigate whether formal verification techniques are useful to improve the results.

Thanks for your attention

 We are grateful for receiving comments, observations, suggestions, and collaborations with other research groups which could improve our research.

francesco.mercaldo@iit.cnr.it

