Connected vehicles - challenges and opportunities

Mathias Johanson, PhD R&D Manager Alkit Communications AB

Can you spot the car?

Can you spot the car?

Can you spot the horse?

1875 Internal combusion engine (Nikolaus Otto)

1885 Benz Patent Motor Car

1875 Internal combusion engine (Nikolaus Otto)

1885 Benz Patent Motor Car

1886 Daimler Four Wheel Car

1900

1950

1875 Internal combusion engine (Nikolaus Otto)

2000

1900

1885 Benz Patent Motor Car

1886 Daimler Four Wheel Car

1950

1886 Accelerator pedal, battery ignition, spark plug, ...

1875 Internal combusion engine (Nikolaus Otto)

2000

1900

1885 Benz Patent Motor Car

1886 Daimler Four Wheel Car

1913 Ford Model T

1950

1886 Accelerator pedal, battery ignition, spark plug, ...

1875 Internal combusion engine (Nikolaus Otto)

2000

Take-home message #1

• After a 100 year hiatus there is once again serious innovation in the automotive industry

Size of software in vehicles

Percentage of repain-shop visits due to software related faults

Take home message #2

Cars are turning into computers on wheels

The connected vehicle

- ~100 Electronic Control Units (ECU) in a modern car
- In-vehicle networks interconnecting ECUs
- Connectivity and Telematics enable remote access to data from ECUs (and other in-vehicle data sources)
- New e-services and new business models appearing

Opportunities

- Enabling new products features based on connectivity and new aftermarket services
- Continuous deployment of in-vehicle software
- Supporting knowledge-driven product development
- Shortening development cycles by providing ubiquitous access to reliable data from products in use
- Improving product quality by finding faults earlier through online diagnostics and analytics services
- Supporting intelligent transportation systems (ITS) by sharing data
- Promoting data-driven innovation

Connectivity as an enabler for new automotive aftermarket services

- Connected collaborative active safety systems
- Remote diagnostics and prognostics
- Predictive / preventive service and maintenance
- ADAS and Autonomous Driving support
- Connected infotainment services
- Continuous deployment of software
- New business offerings based on car-sharing, service-based transportation, etc.

Connected collaborative active safety

Volvo Slippery Road Alert System

Autonomous driving

- Need for low latency V2V and V2I communication
- Challenging processing and communication of multimedia data (video, radar, lidar, ...)

 Sophisticated development tools for design, test, verification and experimentation are needed by automotive OEMs and component developers

Overtaking support based on v2v video

Traffic monitoring center

360 video for ADAS and traffic monitoring

In-vehicle live video display

Overtaking support based on v2v video

Remotely controlled vehicle

(Semi-)autonomous vehicle

Take-home message #3

• The sky is the limit for new services based on connectivity in the automotive industry

Connectivity, Telematics and Analytics supporting knowledge-driven product development

- Collect and analyze data from connected vehicles for use in product development
- Sensor signals, diagnostics data, user behavior and user experience data
- Both pre-production test vehicles and customer vehicles

Automotive Telematics and Analytics enabling knowledge-driven product development

Analyze

Big Data analytics, Data mining, Cloud computing

Data analytics and visualization

- Aggregates data from fleets of vehicles, analyzes and visualizes results
- Web-based front end integrating analytics and visualization components with Telematics system
- Main focus on time series data analytics & statistics
- Data driven
- Extensible

Data-driven analytics approach

Subjective data capture and analysis

Subjective Data Capture Smartphone App

Subjective Data Capture

App can capture data using text-to-speech and voice recognition

Continuous Deployment OTA

Rapid Prototyping of connected Automotive Services

Automotive testing

Take-home message #4

 To stay competitive in the automotive market, product development processes must be both agile and knowledge-based, promoting innovation, while retaining the traditional attention to quality, safety, and economies of scale.

Challenges

- Volume and complexity of data increases
 - How do we design the technological framework supporting capture, analysis and decision-making in a way the is scalable to large numbers of connected vehicles and high data volumes?
- Security and safety
- Privacy preservation
- Product development process affected

Estimated Data Volume

Application	Fleet	Per day	Per year
CAN bus signal monitoring	Customer	560 TB	206 PB
CAN bus signal monitoring	Test	4.5 TB	1.6 PB
Remote Diagnostic Read-Out	Customer	100 GB	36 TB
Remote Diagnostic Read-Out	Test	10 GB	3.6 TB
State-of-Health	Customer	1 GB	365 GB
State-of-Health	Test	100 MB	36 GB
Video / radar / lidar	Test		

M. Johanson et al. "Big Automotive Data - Leveraging large volumes of data for knowledge-driven product development," IEEE International Conference on Big Data, Washington DC, October 27-30, 2014.

Take-home message #5

• Automotive data processing systems must be scalable to large volumes of data.

Security & Safety

- Safety has always been a major concern in automotive engineering
- Vehicles were not originally designed to be connected

Traditional Electrical Vehicle Architecure

Traditional Electrical Vehicle Architecure

Traditional Electrical Vehicle Architecure with Connectivity

Security problem!

Safety problem!

(Simplistic) Countermeasure

Traditional Electrical Vehicle Architecure (slightly more advanced)

Security / Safety by even more isolation

Security / Safety by isolation (back to square one)

Next generation protections

- Security by design
- Safety by Isolation
- Encryption of in-vehicle data communication

Communica

- Intrusion detection systems
- Secure operating systems

Take home message #6

 Balance between security measures and agile development / innovation / competitiveness

Privacy

- When collecting large volumes of data from vehicles, users' privacy must be respected
- Incentives are needed for contributing user experience data
- Anonymisation and Pseudonomisation techniques are inherently problematic
- One approach is to use *Differential Privacy*
 - Noise is added to captured data in a controlled way, so that it cancels out at analysis stage

B. Nelson, "Data Privacy for Big Automotive Data", Licentiate Thesis, Chalmers University of Technology, 2017.

Summary and Conclusions

- After a 100 years, there is again serious innovation in the automotive industry
 - It is happening now. Let's not screw it up!
- Cars are turning into computers on wheels
 - Innovation happens in software development. Focus must be on that.
 - Connectivity leads to Big Data
- The sky is the limit for connected automotive services
 - Many new applications and huge benefits
- Competitiveness requires agile development
 - Connectivity & Big Data keys both for new services and agile development
 - Technology platforms must be designed for scalability and flexibility
- Balance between security measures and agile development
 - Security & safety by design
- Privacy mechanisms needed
 - Anonymisation / pseudonimisation often not good enough
- Many unexplored opportunities for cross-sectoral synergies (e.g. between automotive sector and life sciences)

