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Abstract. Fault Trees (FT) are widespread models in the reliability
field, but they lack of modelling power. So, in the literature, several
extensions have been proposed and introduced specific new modelling
primitives. Attack Trees (AT) have gained acceptance in the field of se-
curity. They follow the same notation of standard FT, but they represent
the combinations of actions necessary for the success of an attack to a
computing system. In this paper, we extend the AT formalism by ex-
ploiting the new primitives introduced in specific FT extensions. This
leads to more accurate models. The approach is applied to a case study:
the AT is exploited to represent the attack mode and compute specific
quantitative measures about the system security.
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1 INTRODUCTION

Fault Trees (FT) [1] are widespread models in the reliability field and represent
how combinations of component failures (called basic events) lead to the system
failure (top event). Basic events are Boolean variables whose value turn from
false to true when the component fails. The intermediate events (subsystem
failures) and the top event are Boolean variables as well, with the same semantics
of basic events, so their value can be determined by means of Boolean gates
(AND, OR, etc.). From a FT model, we can obtain the minimal cut sets which
are the minimal sets of component failures (basic events) determining the system
failure (top event). If a probability distribution is associated with basic events,
the FT allows the computation of several probabilistic measures, such as the
system unreliability (the probability that the system is failed at a given time),
the probability of minimal cut sets, and importance (sensitivity) indices. The FT
modelling power is rather limited, mainly because basic events are assumed to
be independent. So, in the literature, several FT extensions have been proposed
introducing new modelling capabilities, as described in Sec. 2.

Attack Trees (AT) [2] can be considered the application of FT in the field
of security. In other words, an AT follows the same formalism of a FT, but the



goal is representing the combinations of actions (basic events) by an attacker, in
order to succeed in compromising a system (top event). AT can be used to both
graphically represent the attack mode, and assess the system security: both the
qualitative analysis (minimal cut sets detection) and the quantitative analysis
(computation of probabilistic measures) can be performed.

AT typically exploit only Boolean gates in order to express the attack mode.
So, AT and FT have the same modelling power. In this paper, we propose to
include in an AT model all the modelling primitives proposed in specific FT
extensions, with the goal of designing more accurate FT models expressing more
complex attack modes. In particular, in Sec. 3, we model and evaluate a case
study by means of an AT including Boolean gates, dynamic gates, repair boxes,
and the parametric form. The AT model is evaluated by means of Petri Net [1]
generation and simulation, with the goal of computing quantitative indices con-
cerning the system security. The case study is taken from [3]; in the current
paper, we present the complete model design and evaluation.

2 RELATED WORK

Fault Trees. One of the ways to improve the reliability of a system, consists of
replicating its critical components or subsystems; in these cases, the construction
and the analysis of the FT may become quite unpractical because the model will
be composed by several identical (large) sub-trees representing the replicated
parts. Parametric Fault Trees (PFT) [4] were proposed with the purpose of
providing the compact modelling of such parts. Using PFT, identical sub-trees
are folded into a single parametric sub-tree, while the identity of each replica is
maintained through the possible values of the parameters. Dynamic Fault Trees
(DFT) [5] introduced dynamic gates representing several kinds of dependency
between events: functional dependencies, dependencies concerning the order of
events, and the presence of spare components. Repairable Fault Trees (RFT) [6]
introduced a new primitive called repair box representing the presence of a repair
process involving a certain set of components, and activated by the occurrence
of a specific failure event. In [7] the modelling primitives present in FT, PFT,
DFT and RFT formalisms have been integrated into a single formalism called
Generalized Fault Tree (GFT). So, in a GFT model, we can exploit in a combined
way, the compact modelling of redundancies and symmetries, the dependencies
between events, the repair of components or subsystems.

Boolean logic Driven Markov Processes (BDMP) [8] are another extension of
FT. In particular, BDMP exploit traditional Boolean gates, Markov processes
can be associated with basic events, and trigger arcs are used to “activate”
a Markov process as a consequence of an event. The elements of the BDMP
formalism can model the same dependencies set by dynamic gates in DFT, and
other situations such as recovery actions or multi-state components.

Attack Trees. The methodology of AT has become popular and has been ap-
plied in several contexts, such as SCADA systems [9, 10]. Defence Trees (DT)



are an extension of AT where defense mechanisms or countermeasures are in-
corporated. In particular, in [11], they can be represented by basic events, while
in [12, 13], they can appear at any level in the DT; in [14], the point of view of
the attacker as well as the point of view of the defender can be analysed. Another
case of model adaptation from reliability to security is the application of BDMP
models to represent and evaluate attacks [15]. In particular, three types of basic
event represent specific types of event during the attack.

Petri Nets. Besides AT, Petri Net based models have been applied to secu-
rity: Attack nets [16] for penetration testing, and Stochastic Activity Networks
(SAN) [17] with several purposes [18–21]. In general, AT models are easy to
build and very readable, but they lack of modelling power because they can only
represent the features that gates can express. Petri Net based models can model
more complex events, but they are harder to build, less readable and less intu-
itive to interpret. A trade-off is the generation of Petri Net models from AT. In
this way, the attack can be easily represented as a familiar model like AT, and
the corresponding Petri Net can be automatically generated, and possibly edited
to include further aspects that AT cannot capture. This approach has been ap-
plied in several works: in [22] a standard AT is converted into a Colored Petri
Net with the aim of evaluating the model. The same goal is achieved in [23],
but resorting to Generalized Stochastic Petri Nets (GSPN) [1]. The Petri Net
attack modeling approach (PENET) [24] extends this approach by taking into
account also some of the dynamic gates introduced in DFT, such as the Priority
AND (PAND) gate [5], and exploits Deterministic timed transitions Petri Nets
(DTTPN).

The same approach is applied in the current work where the AT model is
conform to the GFT formalism providing several advantages:

– we can model the presence of recovery, as in the case of DT.
– All the dynamic gates of DFT are available (PAND, SEQ, WSP, FDEP [5]),

instead of a subset;
– The parametric form allows to model in a compact way the contemporary

presence of several attackers, while AT typically consider a single attacker.
This allows the computation of quantitative measures concerning contempo-
rary attempts of attack (Sec. 3.2).

– The presence of all the modelling primitives introduced in FT, PFT, DFT
and RFT makes the AT an higher-level model which is more readable with
respect to other dynamic extensions of AT or FT, such as BDMP where
the dynamic aspects are “hidden” in the basic events or in the trigger arcs,
instead of being explicitly represented by means of specific nodes.

– Modelling primitives taken from different formalisms (FT, PFT, DFT, RFT)
can be used in a combined way. For instance, a repair box can be applied to
a parametric subtree containing dynamic gates (Sec. 3.1).



Mean time to Occurrence
Event Description occurrence 1/λ rate λ

v1 occurrence of v1 (24 · 60) h 0.000694 h−1

v2 occurrence of v2 (24 · 90) h 0.000462 h−1

v1REP recovery of v1 (24 · 10) h 0.004166 h−1

v2REP recovery of v2 (24 · 7) h 0.005952 h−1

LOGGING IN attempt to log-in (24 · 2) h 0.020833 h−1

CRACKING attempt to crack the root password 24 h 0.041666 h−1

GUESSING attempt to guess the root password (24 · 365 h) 0.000114 h−1

DISCOVERING removal of a user logged-in 24 h 0.041666 h−1

Table 1. The mean time to occurrence and the corresponding rate for each event in
the case study.

3 THE CASE STUDY

The case study consists of the acquisition by an attacker, of the root password
of a Unix server which is periodically characterized by two vulnerabilities: v1 is
the possibility that a not authorized user (attacker) logs-in; v2 is the possibility
to crack the root password.

The attack is performed in this way: in the time interval between the occur-
rence of v1, and the detection and recovery of v1, one or more attackers may try
to log-in (event LOGGING IN ). After the detection of v1 (event v1REP), the
system administrator may discover and remove the not authorized users logged-
in (event DISCOVERING). In order to detect v1, at least one attacker has to be
logged-in. The undiscovered attackers keep their presence in the system and may
discover the root password in two ways: 1) trying to crack the root password
(event CRACKING) during the occurrence of v2 ; 2) trying to guess the root
password (event GUESSING); this operation does not require any vulnerability.
Also v2 may be detected and recovered (event v2REP). Both v1 and v2 may
occur again after their recovery. The server becomes compromised if at least one
attacker succeeds in discovering the root password.

All the events described above may occur if allowed by the current system
state and after an interval of time which is a random variable ruled by the
negative exponential distribution. Tab. 1 shows the mean time to occurrence of
each event, with the corresponding rate λ. Actually the values of λ have been
chosen in an arbitrary way. Probability distributions and rates closer to reality
might be obtained by means of statistical investigations.

Some events cannot happen before other ones. For example, the attempt to
crack the root password (event CRACKING) cannot be performed if the at-
tacker has not succeeded in logging-in and v2 has not occurred. In a similar
way, logging-in may be attempted only after the occurrence of v1. These are the
temporal dependencies between the events (the symbol ≺ specifies that an event
must precede another one):



Fig. 1. Standard attack tree model of the case study.

v1 ≺ LOGGING IN
v1 ≺ v1REP
(LOGGING IN ∧ v2 ) ≺ CRACKING
LOGGING IN ≺ GUESSING
(LOGGED IN ∧ v1REP) ≺ DISCOVERING
v2 ≺ v2REP

Some events, once “enabled”, may be repeatable. For instance, while v1 is
occurring, one or more attackers may log-in. In a similar way, while v2 is occur-
ring, one or more attackers may discover the root password. The occurrence and
the recovery of a vulnerability are instead alternating events.

3.1 Model design

Standard AT. A preliminary model of the case study is the standard AT
shown in Fig. 1 where only Boolean gates are present (Sec. 1). This model rep-
resents the attack mode by a single attacker: the event LOGGED IN represents
that the attacker has succeeded in logging-in; it is the output of an AND gate,
so it occurs if both its inputs events v1 and LOGGING IN occurs (Tab. 1).
The event ROOT models the discovery of the root password and is the out-
put of an OR gate, so it occurs if CRACKED or GUESSED occurs. The event
CRACKED represents that the password has been cracked, and occurs if all the
events CRACKING, v2 and LOGGED IN have occurred. The event GUESSED
occurs if both LOGGED IN and GUESSING have occurred. This model has
several limits:

– it considers only a single attacker, while in the case study more attackers
may act at the same time.

– It ignores the temporal dependencies between the events specified above; for
instance, in the model, LOGGING IN may occur at any time, before or after
v1; CRACKING may occur before or after LOGGED IN or v2.

– It does not take into account the recovery of v1 and v2.



Fig. 2. Attack tree model of the case study, using GFT formalism (the labels of the
nodes are explained in Tab. 1).

Such limits can be overcome by the AT shown in Fig. 2. This model con-
tains the modelling primitives collected in the GFT formalism (Sec. 2). The top
event (TE), the “root” of the AT, represents the situation where the server is
compromised. This happens if at least one attacker discovers the root password.

Parametric form. TE is the output of an OR gate connected to the event
ROOT(i), with i = 1, 2, . . . . ROOT(i) represents the discovery of the root pass-
word by the i-th attacker introduced inside the system. ROOT(i) is actually a
replicator event. This means that the sub-tree below ROOT(i) is the compact
representation of several sub-trees with the same structure. The identity of each
sub-tree is maintained by the possible values of the parameter i which is asso-
ciated with the events in the sub-tree, with the exception of v1 and v2 which
are instead events shared by all the replicated sub-trees. So, each sub-tree folded
in the parametric sub-tree, concerns the actions by the i-th attacker (Sec. 2).
ROOT(i) is the output of another OR gate, so ROOT(i) happens if the i-th
attacker succeeds in cracking (event CRACKED(i)) or guessing the password
(event GUESSED(i)).

Dynamic gates. We use three Sequence Enforcing (SEQ) gates forcing their
input events to occur in a specific order. The output event of this gate corre-
sponds to the last input event in the sequence. The basic event CRACKING(i)
(attempt to crack the password by the i-th attacker) is connected as second in-
put, to two SEQ gates. Therefore this event may happen only after the success
of the log-in by the i-th attacker (event LOGGED IN(i)) and the vulnerability
v2 (basic event v2 ). In the same way, the attempt to log-in by the i-th attacker



(event LOGGING IN(i)) may happen only after the vulnerability v1 (basic
event v1 ). Also the event GUESSING(i) (attempt to guess the password by the
i-th attacker) is connected to a SEQ gate: such event may happen only after the
event LOGGED IN(i).

Repair box. In an AT, the repair box (Sec. 2) can be used to model the
recovery of a vulnerability. In Fig. 2, two repair boxes (Sec. 2) are present: the
repair box called v1REP represents the recovery of v1 and the detection of the
not authorized users logged in. For this reason, v1REP is connected to the event
LOGGED IN(i) due to the sequence of the basic events v1 and LOGGING IN(i).
The repair box v2REP instead, represents only the recovery of the vulnerability
v2, so it is connected to the basic event v2. The rates of basic events and repair
boxes are the values of λ in Tab. 1.

3.2 Model evaluation

Dependencies are present in the model, due to dynamic gates and repair boxes.
Therefore it needs the state space analysis; this means generating all the possible
system states and stochastic transitions between states. This can be performed
by converting the AT into a Generalized Stochastic Petri Net (GSPN) [1]. Then,
by exploiting the available GSPN solution techniques, we can generate and the
analyze the underlying Continuous Time Markov Chain (CTMC) [1]. An alter-
native to analysis is the GSPN simulation. The AT in Fig. 2 is translated into
the GSPN in Fig. 3. Both models have been edited by means of Draw-Net [25].

In FT, basic events are repeatable only in case of repair. For instance, a
component may fail and then, undergo repair, fail again, and so on. In the AT, a
basic event may be repeatable for an undefined number of times, even in absence
of recovery. For example, while the system suffers from the vulnerability v1, an
attempt to log-in may occur even if another attempt has already been done. As
a consequence, any number of attackers may log-in. For this reason, we did not
follow the conversion rules defined in [7] because they are oriented to reliability.

The repetitions of basic events leads the dimensions of the state space to be-
come infinite, so the model cannot undergo analysis. A remedy to this problem
consists of setting a limit to the number of repetitions of an event. For instance,
we could assume that 10 is the highest number of attackers logged-in. This ap-
proach reduces the dimensions of the state space, but they still remain relevant,
and the model may not be realistic. So, the GSPN obtained from the AT, has
been evaluated using simulation instead of analysis. In this way, we avoid to
impose limits to the number of event repetitions, and the simulation execution
is less expensive than analysis, in terms of computing complexity. We executed
100000 simulation cycles in order to obtain the results described below.

GSPN. A GSPN contains places (appearing as circles), immediate transitions
(black bars) and timed transitions (white bars). Places contain tokens which are
moved by transitions in immediate way or after a random period of time.



Fig. 3. GSPN model of the case study.

In the GSPN in Fig. 3, the vulnerability v1 is modelled by the places v1OK
which contains one token in case of absence of v1, and v1DN containing one to-
ken in case of presence of v1. The occurrence of v1 is modelled by the transition
v1F , while its recovery is modelled by the transition v1REP . The vulnerability
v2 is modelled in a similar way. The transition LOGGING IN is enabled by the
presence of one token inside the place v1DN , and produces the tokens inside the
place LOGGED IN corresponding to the number of attackers logged-in. This
enables the transition GUESSING moving tokens from the place LOGGED IN
to the place GUESSED, in order to model the success of password guessing. If
marked, the place v1OK enables the transition discovered removing tokens from
the place LOGGED IN, with the purpose of modelling the removal of attackers
from the system. The transition CRACKING is enabled by the contemporary
presence of tokens inside the places LOGGED IN and v2DN, and moves tokens
from LOGGED IN to CRACKED, in order to model the success of password
cracking. The tokens inside GUESSED or CRACKED are moved into the place
ROOT by the transition OR1 or OR2, with the aim of representing that an
attacker has obtained the root password. The presence of any quantity of tokens
inside ROOT determines the place TE to be marked by one token. This rep-
resents that the system is compromised (the place TE corresponds to the top
event of the AT).

The rates of timed transitions are the values of λ reported in Tab. 1. With
the goal of computing specific indices, further places have been added to the
GSPN: count login, count disc, count crack, count guess. They count the num-
ber of: successful attempts to log-in, attackers removed from the system, success-
ful attempts to crack the password, successful attempts to guess the password,
respectively.



Fig. 4. a) Probability that the system is compromised.
b) The mean number of: intrusions in the system, discovered intrusions, attackers that
have discovered the root password.
c) The mean number of: attackers that have discovered the root password, by means
of password cracking, password guessing, or any of them.
d) The mean number of undetected attackers that have not discovered yet the root
password.

Results. Several measures concerning the system security have been computed,
as a function of the time varying between 0 and 15000 hours. Fig. 4.a shows the
probability that the system has been compromised. This means that at least one
attacker has discovered the root password. This measure may be interpreted as
the unreliability of the system (Sec. 1), and has been computed as the mean
number of tokens present inside the place TE. Since this number can be 0 or
1, its mean provides a probability value. Fig. 4.b shows the mean numbers of
intrusions in the system, discovered intrusions, attackers that have discovered
the root password by the performance of password cracking or guessing. These
measures have been computed as the mean number of tokens inside the places
count login, count disc, ROOT, respectively. Fig. 4.c shows the mean number of
attackers that have discovered the root password, by means of password cracking,
password guessing, or any method. These measures have been computed as the
mean number of tokens inside the places count crack, count guess, ROOT, re-
spectively. Fig. 4.d shows the mean number of undetected attackers that have not
discovered yet the root password (mean number of tokens inside LOGGED IN ).
Such measure reaches a steady value equal to 1.13, after about 3000 hours.



Fig. 5. SWN model of the case study.

SWN. An alternative way to solve the AT model in Fig. 2 is the Stochastic
Well-formed Net (SWN) [26] shown in Fig. 5, instead of GSPN. In the SWN,
tokens can be coloured, so the attackers can be distinguished by means of a
colour class (C1) associated with the places representing the state of the attack
(LOGGED IN, CRACKED, GUESSED, ROOT ). A SWN can be analyzed by
generating the corresponding symbolic state space whose size is reduced with
respect to the ordinary state space. However, the number of colours in a colour
class has to be limited, so the number of attackers has to be limited to a certain
amount. SWN can undergo simulation as well.

4 CONCLUSIONS

The aim of this paper is transferring our experience about FT extensions, from
reliability to security. The GFT formalism defined for reliability evaluation pur-
poses, has been adopted for AT, so that we can model the attack mode by resort-
ing to a single generalized formalism including and integrating Boolean gates,
dynamic gates, the parametric form and repair boxes. In this way, the modelling
power of AT is improved in a relevant way, so that more accurate models can
be designed. The approach has been applied to a case study characterized by
recoveries, symmetries and dependencies between events. The current work is
a first attempt to use the GFT formalism for AT, so the case study is rather
preliminary; however, it serves as proof-of-concept to demonstrate the feasibility
of using the GFT formalism, with the consequent improvement of the modelling
possibilities. The AT of the case study has been evaluated by conversion into a
Petri Net and in particular, a GSPN undergoing simulation. The goal is to avoid
the problem of state space explosion, due to the repeatable events.



We believe that the formalism needs further improvements in order to be
suitable for the security field. For example, using GFT formalism, the AT model
takes into account both the attack mode and the recovery mode. Actually, repair
boxes can represent reactive recovery processes. This means that the recovery
can be performed only as a consequence of a partial or complete intrusion. The
formalism may be extended by taking into account the preventive recovery as
well. In this way, preventive countermeasures could be included in the AT model.
This was already done in [12, 14], but using only Boolean gates. Moreover, we
plan to compute indices which are more security-oriented, with respect to the
measures computed in this paper. Importance measures for security are defined
in [11, 12], such as Return on Attack (ROA) and Return on Investment (ROI).

Our intention in the future is solving AT models by means of Dynamic
Bayesian Networks (DBN) [27], already exploited for DFT and RFT analy-
sis. The advantage is the possibility of easily modelling multi-state components
and computing predictive, diagnostic, or importance measures conditioned by
observations about the system or components state. In the security field, ob-
servations may concern the action by intruders, the presence of vulnerabilities
or countermeasures. We plan to use AT as an high-level model to represent the
attack mode and generate the corresponding DBN.
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