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Abstract

Often systems need to be both safe (so that no harm comes from
using the systems) and secure (so that no one can damage the opera-
tion of the system). Sometimes these demands conflict with one another,
because safety dictates quick and timely responses, while security necessi-
tates time consuming cryptographic operations. We show how to mediate
this dilemma by introducing redundancy into the system thereby show-
ing how methods and techniques from the safety culture can be used to
achieve the coexistence of safety and security.

1 Introduction

Safety and security are both desirable goals of systems. Safety [4] concerns
making sure that no harm can arise from using the system; it often requires
that the system responds within short time bounds. As an example, the airbag
in a car needs to react quickly to signals from the collision sensors in order
to achieve its purpose. Security [3] has many facets including confidentiality,
making sure that nobody can learn data not intended for them, and integrity,
making sure that only properly authorized agents can influence the data upon
which we need to act. As an example, an automatic brake function for slowing
the car when a tyre explodes should make sure to react to the sensors of the car
rather than the sensors on neighboring cars.

Sometimes safety and security seem to counteract each other. As we illustrated
above, safety often requires that the system responds quickly whereas security
can only be achieved by using cryptography that slows down the signaling from
sensors. This sometimes calls for using quicker and more expensive hardware or
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Figure 1: A sensor S, a control unit C and an actuator A together with three
channels ask, reply and tell used for communication.

even for redesigning the entire system. In this paper we show that redundancy
sometimes suffices for solving the dilemma.

Section 2 introduces a very simple system that suffices for our discussion; it
consists of a sensor, a control unit and an actuator. To model the system we
make use an extension of a fragment of our Quality Calculus [9, 10, 12]. Next in
Section 3 we describe the expectations to safety as expressed in standards such
as [4] and show how to choose the system parameters to achieve the desired
level of safety. In Section 4 we briefly survey methods for achieving security
and choose the particular scheme we will be advocating; as an unfortunate
consequence our system now fails in achieving the desired level of safety and
in the following sections we discuss ways of modifying the system to rectify
this. In Section 5 we show how one of the classical techniques from the safety
community, namely that of redundancy, can be used to regain the desired level
of safety. While this involve introducing more sensors into the system, another
possibility is to increase the power of the sensor either in its ability to perform
the required measurements or in its compute power and this is discussed in
Section 6. Finally, in Section 7 we consider the possibility of strengthening the
cryptography by using longer keys. We conclude in Section 8.

2 The System

We shall consider a simple system consisting of a sensor S, a control unit C
and an actuator A as illustrated on Figure 1. The control unit will poll the
sensor for a certain measurement and then wait for a reply for a fixed number
of time units, in our example it will be 200µs. The sensor is ready to deliver its
measurements at any time but will do so with a small delay so we shall assume
that on average it will take 6.2µs before the measurement is delivered. If the
control unit has received the measurement before the 200µs has passed it will
process it and send a message to the actuator before recursing. In the event that
the measurement is not received within the 200µs, the control unit still have
to take appropriate actions and it will therefore send an alert message to the
actuator before recursing. Finally, we shall assume that the actuator is always
ready to receive the message.

We shall focus on the operations of the control unit and model it in a version of
the Quality Calculus [9, 10, 12]. This is a calculus in the π-calculus [8] family
that allows us to express not only what should happen when communications
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are successful but also what should happen when they are unsuccessful. In
our example this will be useful in the case where the sensor fails to deliver
the measurements within the required time limit. We shall use the stochastic
version of the Quality Calculus [13] that integrates stochastic delays (and real-
time waiting times) with the actions unlike for example the IMC process algebra
[2]. The control unit is a recursive process that can be specified as follows:

C , ask!p. &[200µs,200µs]
true (reply?x).

case x of some(y) : tell!(f y). C
else tell!alert. C

The first action is ask!p and it will send a message on the channel ask shared
with the sensor and ask for the measurement of the parameter p. The con-
trol unit will then enter the real-time wait expressed by the binding construct
&[200µs,200µs]

true (reply?x); it expresses that the process wants to input a value (to
be bound to the variable x) on the channel reply shared with the sensor and
that it will wait for exactly 200µs. This construct is an instance of a general
binding construct of the form

&[t1,t2]
q (c1?x1, · · · , cn?xn)

stating that we are waiting for a number of inputs c1?x1, · · · , cn?xn on channels
c1, · · · , cn. The construct expresses that will be waiting for at least t1 time units
and at most t2 time units and within this time interval we will proceed if the
inputs received satisfy the predicate q – thus we will never proceed before t1
time units have passed and, at the very latest we will proceed after t2 time units
independently of whether q holds or not. As an example, the predicate q may
be ∀ meaning that we will only proceed before t2 time units have passed if all
inputs have been received. Another example is ∃ meaning that we proceed as
soon as one of the inputs is received but only if at least t1 time units have passed.
In the specification of the control unit above, we are only waiting for one input
and the time interval is [200µs, 200µs] meaning that we are waiting for exactly
200µs; the predicate q is true meaning that we will proceed independently of
whether some input has been received or not.

The binding construct of the specification above will result in binding the vari-
able x to a value of the form some(c) if the input on reply was successful within
the time bound and it will bind x to the value none otherwise. The case con-
struct of the second line of the specification then determines which of the two
situations apply. In the first case the variable y will be bound to the value
received (denoted by c above) and it will be processed (using the function f)
before being output on the channel tell shared with the actuator and then the
control unit will recurse. Alternatively the communication with the sensor was
not successful and the value alert is sent to the actuator before recursing.
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Safety Integrity Level Probability of Failure per Hour
1 10−5 – 10−6

2 10−6 – 10−7

3 10−7 – 10−8

4 10−8 – 10−9

Table 1: Safety Integrity Levels and the Probability of Failure per Hour.

3 The Safety Analysis

We shall now assume that the system has to be certified according to one of the
safety standards, in particular we shall be interested in determining its Safety
Integrity Level [4]. Such analyses are based on a probabilistic analysis of the
device and since our system is supposed to operate continuously we shall be
interested in the Probability of Failure per Hour. Depending on this probability
the system may be certified with one of four Safety Integrity Levels as shown in
Table 1.

As explain in the previous section, the control unit of our system will contin-
uously cycle through the following behaviour. At the beginning of the cycle,
the sensor is queried and on average it takes it 6.2µs to produce a result. It is
considered a hazard if a value is not received from the sensor so in the interest
of safety, the control unit waits a full 200µs before actually reading the result
from the sensor. Then it will output the result to the actuator before starting
all over again.

We shall make the assumption that the delays on part of the sensor in providing
the answer is governed by a Markov chain with just one transition, that is
by an exponential distribution. Taking seconds as our unit of time this gives
rise to a parameter λ that is the reciprocal of 6.2 · 10−6s which gives λ =
1.613 · 105s−1. If more complex distributions are needed we would model them
as continuous phase type distributions or Continuous Time Markov Chains and
rely on stochastic model checking [5, 6]; however in the following we shall stick
to the exponential distribution.

For each cycle we can therefore compute the probability pc that the sensor signal
is not available when required. It is given by the formula

pc = e−λ·t

where t = 200µs is the waiting time. In our case this works out to pc = 9.8·10−15.

In order to compute the Safety Integrity Level we shall be interested in the
probability that at least one error takes place during one hour; it is given by
the formula

ph = 1 − (1 − pc)n
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where n is the number of cycles in an hour, that is n = 3600/(200 · 10−6).
For our example this works out to ph = 1.8 · 10−7; this probability suffices for
achieving the Safety Integrity Level 2.

Higher levels can be achieved by replacing the sensor with a more responsive
one. As an example, if we replace our current sensor (requiring 6.2µs on average
to return a measurement) with one that only requires 6.0µs on average, we will
obtain the Safety Integrity Level 3.

4 The Cost of Cryptography

We shall now assume that our system will be deployed in a setting where security
is an issue. Safety is still an issue so the hard real-time bounds are unchanged
and the system still has to be certified according to one of the safety standards
so as above we are interested in determining the Safety Integrity Level.

To protect the communication between the sensor and the control unit we shall
use cryptography. This means that the sensor will encrypt the message before
sending it to the central unit that then will have to decrypt the message before it
can be further processed. In order to comply with the overall safety requirements
of the system, the hard timing constraints still have to be fulfilled meaning that
the hard real-time bound of 200µs is unchanged. Basically this means that
encryption as well as decryption have to happen within this very time interval
as illustrated on Figure 2.

For cryptography we shall adopt AES – the Advanced Encryption Standard [1].
It is a symmetric key algorithm meaning that it uses the same key for encryption
and decryption of data. The encryption and decryption algorithms proceed in a
number of rounds determined by the key length; each round consists of several
steps performing various operations influenced by so-called round keys that are
extracted from the main key. If the main key is a 128 bit key then a total of 10
rounds are performed, if the key has length 192 bits we need 12 rounds whereas

0 200µs
without crypto:

communication

0 200µs
with crypto:

encryption communication decryption

Figure 2: The cryptographic operations must be carried out within the fixed
time interval.
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Figure 3: System with Dual Modular Redundancy.

14 rounds are required if the key length is 256 bits.

The operations performed in each of the rounds consist of a number of matrix
operations that are very similar so in the following we shall assume that the
individual rounds take a fixed amount of time. The time required will depend
on the processing power of the device and here it is reasonable to assume that the
sensor node and the control unit have different computational power. So in our
computations below we shall assume that the sensor requires 8µs to complete
a round whereas the central unit only requires 2µs to perform the similar task.
With a 128 bit key the sensor will have to perform 10 such rounds thereby
spending 80µs on encryption. Similarly the control unit will have to perform 10
rounds to perform the decryption and for this it will use 20µs. As the overall
real-time requirements are unchanged, this means that the required 100µs for
cryptographic operations must be taken from the 200µs thereby leaving just
100µs for the communication.

In the case of 128 bit keys and 10 rounds the resulting control unit can be
modelled as follows:

C , ask!p. &[100µs,100µs]
true (reply?x).

case x of some(y) : decrypt y into z : tell!(f z). C
else tell!alert. C

It is not surprising that adding cryptography has safety implications. As before
the formula pc = e−λ·t describes the risk that the message does not arrive within
t time units. The sensor is unchanged so it still produces a measurement every
6.2µs on average so the parameter λ is unchanged but the time period t available
for the communication is now just 100µs. Therefore the risk of the failure of a
single measurement will raise to pc = 9.9 · 10−8.

We can now compute the probability that at least one error takes place during
one hour; as before it is given by the formula ph = 1− (1− pc)n where n is the
number of cycles per hour; with the new value of pc it works out to ph = 0.83
– which clearly is unacceptable with respect to the safety standards.
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5 Redundancy

One of the classical approaches to reducing the failure rate of systems is to
incorporate some form of redundancy [7]. We shall now show how to do this in
the present setting where we have incorporated cryptographic operations in our
system.

The idea is to extend the system with an additional sensor performing the same
measurements as the original sensor and then to reprogram the control unit so
that it communicates with both sensors. This is illustrated on Figure 3 and the
actual code for the control unit C in the absence of cryptography is as follows:

C , ask1!p. ask2!p. &[200µs,200µs]
true (reply1?x1, reply2?x2).

case x1 of some(y1) : tell!(f y1). C
else case x2 of some(y2) : tell!(f y2). C

else tell!alert. C

The request for the parameter p is sent to both sensors and the binding construct
&[200µs,200µs]

true (reply1?x1, reply2?x2) is now expressing that we wait for exactly
200µs time units and at that time we will inspect whatever inputs have been
achieved on the two channels reply1 and reply2. The two nested case statements
give priority to the input received from sensor S1 and only if none of the two
sensors have succeeded in delivering a measurement we will send the alert to
the actuator.

In the case of cryptography with 128 bit keys and 10 rounds, the control unit
C may be defined as follows:

C , ask1!p. ask2!p. &[100µs,100µs]
true (reply1?x1, reply2?x2).

case x1 of some(y1) : decrypt y1 into z1 : tell!(f z1). C
else case x2 of some(y2) : decrypt y2 into z2 : tell!(f z2). C

else tell!alert. C

As in the previous section the time interval is just 100µs.

Following Section 4 the formula pc = e−λ·t describes the risk that the measure-
ment from a single sensor does not arrive within t time units. The risk that
none of the two sensors are successful within t time units will therefore be p2

c .
In the case where t = 100µs this amounts to 9.8 · 10−15.

As before we can compute the probability that at least one error takes place
during one hour; it is now given by the formula ph = 1 − (1 − p2

c)
n that works

out to ph = 1.8 ·10−7. This probability suffices for achieving the Safety Integrity
Level 2 – the same level that we achieved in Section 3 with the same sensor.
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6 More powerful sensors

In the previous section we showed how redundancy could be used to improve the
system when cryptography was added. In this section we shall now investigate
to what extent similar effects can be obtained by replacing the (single) sensor
with one with a better performance. We shall consider two possibilities: One is
to improve on the measuring capabilities of the sensor so that the average time
for obtaining a measurement becomes lower. Another possibility is to improve
the computational power of the sensor so that it can perform the cryptographic
operations faster.

Let us first consider improving the measuring abilities of the sensor. We shall
repeat the calculations of Section 4 using a 128 bit key but with a sensor that
performs the measurements faster. The first column of the table below shows
the improvement in the average time needed for the sensor to produce a result,
the second column shows the resulting probability for the message not being
present when required by the control unit (within the 100µs time bound) and
the last column shows the probability of missing a measurement within one
hour.

improvement pc ph

6.2µs(100%) 9.9 · 10−8 0.83
5.58µs(90%) 1.6 · 10−8 0.26
4.96µs(80%) 1.8 · 10−9 0.031
4.34µs(70%) 9.8 · 10−11 0.0018
3.72µs(60%) 2.1 · 10−12 3.8 · 10−5

3.10µs(50%) 9.8 · 10−15 1.8 · 10−7

The table shows that a substantial improvement is necessary as only the last
entry in the table will warrant a Safety Integrity Level, in this case level 2.

An alternative is to improve the computational capabilities of the sensor, that
is, the time it requires in order to perform the cryptographic operations. So
far we have assumed that it takes 8µs to perform each of the 10 rounds of
computation required for a 128 bit key. The table below shows the results
obtained by reducing the amount of time needed to perform each round of the
encryption. The first column shows the time required for a single round and the
next two columns list the resulting probability for a single message to be lost
and the probability for missing a measurement within an hour.

improvement pc ph

8µs 9.9 · 10−8 0.83
6µs 3.9 · 10−9 0.068
4µs 1.6 · 10−10 0.0028
2µs 6.2 · 10−12 0.00011

Thus we see that even when the sensor is as fast as the control unit it is not
possible to obtain any of the Safety Integrity Levels.
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However, if we combine the two improvements we obtain more interesting re-
sults outlining a design space. The columns in the following table record the
improvements of measuring capabilities whereas the rows record the improved
computational capabilities of the sensor. For each combination we then list the
probability of failure per hour:

6.2µs 5.58µs 4.96µs 4.34µs
8µs 0.83 0.26 0.031 0.0018
6µs 8.2 · 10−3 2.0 · 10−2 5.6 · 10−4 1.8 · 10−5

4µs 2.8 · 10−3 2.3 · 10−4 9.9 · 10−6 1.8 · 10−7

2µs 1.1 · 10−4 6.3 · 10−6 1.8 · 10−7 2.0 · 10−9

Thus we see that the combination of 4.96µs and 4µs allow us to obtain the
Safety Integrity Level 1 and so does the combination of 5.58µs and 2µs. The
combination of 4.34µs and 4µs as well as that of 4.96µs and 2µs allow us to
obtain a Safety Integrity Level of 2.

7 Strengthening the cryptography

What happens if we strengthen the cryptography by using a 256 bit key? The
first observation is that we need 14 rounds in the encryption and decryption
algorithms rather than just 10. This means that 140µs will be used for cryp-
tographic operations (rather than just 100µs) and thus only 60µs are left for
delays in communication. Without any redundancy the risk of failure within
one hour is 1 and even with Dual Modular Redundancy as in Section 5 we can-
not achieve any Safety Integrity Levels as the risk of failure within one hour
amounts to 0.068.

Therefore we might consider adding yet another sensor and thereby go for Triple
Modular Redundancy; this is captured by the following modification of the code
considered earlier:

C , ask1!p. ask2!p. ask3!p. &[60µs,60µs]
true (reply1?x1, reply2?x2, reply3?x3).

case x1 of some(y1) : decrypt y1 into z1 : tell!(f z1). C
else case x2 of some(y2) : decrypt y2 into z2 : tell!(f z2). C

else case x3 of some(y3) : decrypt y3 into z3 : tell!(f z3). C
else tell!alert. C

The risk of having no measurement from any of the sensors now amounts to pc

= 2.5 ·10−13 and the failure rate per hour now becomes ph = 4.4 ·10−6 meaning
that we can achieve the Safety Integrity Level 1.
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8 Conclusion

The ideas presented in this paper were largely motivated by the considerations
of the SESAMO project [11] which studies the interplay between safety and
security in the construction of embedded systems. Both safety and security are
desirable or even necessary properties of such systems but sometimes they offer
conflicting demands on the embedded system. In the present paper our focus was
on timeliness of response – a property that is often required for safety and that
may be jeopardised by the time taken to follow cryptographic communication
protocols.

Using the Quality Calculus [9, 10, 12] as a means to explaining our design we
showed how to analyse a tiny system to achieve security guarantees in compli-
ance with the Safety Instrumented Standard [4]. We next showed how to model
the “strain” on the system presented by needing to use part of the time for
cryptographic protection. The resulting safety analysis showed that we could
not maintain the required security guarantee. In our case this could be rec-
tified by redundancy – simply having two sensors instead of one. This study
was scalable in the sense that it could be adapted to different instantiations
of the cryptographic scheme presenting different demands on the amount of
computation time needed.

This suggests that some of the methods and techniques for fault tolerance em-
ployed in embedded system can also be used for overcoming the challenges posed
by the need to simultaneously offering safety and security in embedded systems.
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