
Faster Two-Bit Pattern Analysis of Leakage

Ziyuan Meng and Geoffrey Smith

School of Computing and Information Sciences
Florida International University, Miami, FL 33199, USA

zmeng001@cis.fiu.edu, smithg@cis.fiu.edu

Abstract. In the context of quantitative information flow analysis, two-
bit patterns are a recent approach to computing upper bounds on leakage
in deterministic programs. This paper shows that two-bit pattern analy-
sis can be done more efficiently through the use of four new techniques:
implication graphs, random execution, STP counterexamples, and deduc-
tive closure. We find that these techniques reduce the analysis time for
a set of case studies by an average of 72%; in close to half the cases, the
reduction is greater than 90%.

1 Introduction

Much experience has shown that computer systems are prone to leaks, both
inadvertent and malicious, of their confidential data. Moreover, eliminating such
leaks completely is often infeasible, for instance due to the existence of side
channels based on timing or power consumption. Quantitative information flow
addresses this problem by quantifying the amount of confidential information
leaked by a system, with the goal of showing that it is “small” enough to be
tolerated; this area has seen growing interest over the past decade (e.g. [1–6].)

To give some quick intuition, assume (as we will throughout this paper) that
X and Y are 32-bit unsigned integers, where X is the secret input and Y is the
observable output. Consider the following three C programs:

1. Y = X;,
2. Y = 17;,
3. Y = X & 0x1f;

Intuitively it seems clear that the leakage of these three programs should be 32,
0, and 5 bits, respectively. Notice that these quantities are the logarithms (to
base 2) of the number of feasible values for Y, which is 232, 1, and 25, respectively.

In the literature, a variety of entropy-like measures have been proposed for
quantifying information leakage. But, pleasantly, if we restrict our attention to
deterministic systems and to their capacity (i.e. their maximum leakage over all
prior distributions on the secret input), we have the following theorem [3, 7, 8]:

Theorem 1. The capacity of a deterministic system, whether measured by Shan-
non entropy or min-entropy, is the logarithm of the number of feasible outputs.
This quantity is also an upper bound on the g-leakage, for any gain function g.

2

(Note, by the way, that this theorem is consistent with our intuition about the
three examples above.)

Given any theory of quantitative information flow, it is desirable to develop
automatic techniques for calculating (or at least bounding) the amount of leakage
in a system, to verify whether it conforms to a given quantitative flow policy.
In previous work [9], the authors developed the approach of two-bit patterns
to calculate upper bounds on the capacity of deterministic programs. The key
idea (justified by Theorem 1 above) is to bound the number of feasible outputs
by determining one-bit patterns that constrain each individual bit and two-bit
patterns that constrain each pair of bits in the output. For example, suppose
that the program has 6 feasible outputs,

{00010, 10001, 00001, 00110, 10101, 00101}

where we index the 5 bit positions from 4 down to 0. Studying these outputs, we
notice that bit 3 is fixed—it is 0 in every output, which we express as Zero(3). In
contrast, bits 4, 2, 1, and 0 can each be 0 or 1, and we refer to them as Non-fixed.
Notice that it is only the non-fixed bits that give rise to multiple outputs; here
the fact that there are 4 non-fixed bits tells us immediately that there can be at
most 24 = 16 feasible outputs.

We can tighten this bound by considering the relationship between each
pair of non-fixed bits. For instance, if we examine bits 4 and 0, we see that
the possible combinations of values that they can take are {00, 11, 01}, which
we express as Leq(4, 0). Bits 4 and 2, in contrast, can take all four combinations
{00, 10, 01, 11}, which we express as Free(4, 2). The complete two-bit patterns for
this example are shown in Figure 1.1 Two-bit patterns represent constraints that

Zero(3)

4 2 1 0

4 Eq Free Nand Leq
2 Free Eq Free Free
1 Nand Free Eq Neq
0 Geq Free Neq Eq

Fig. 1. Two-bit patterns for {00010, 10001, 00001, 00110, 10101, 00101}

must be satisfied by the bits of each feasible output. So if we count the number of
solutions to the two-bit patterns, we get an upper bound on the number of feasible
outputs—in this case, it turns out that there are just 6 solutions, meaning that
here our upper bound is exact.

In the small (but often intricate) case studies in [9], we found that two-bit
patterns could be calculated using the STP solver [10] within a few seconds, and

1 While Figure 1 suggests that n non-fixed bits lead to n2 two-bit patterns, in fact
there are only

(
n
2

)
= n(n−1)/2 interesting patterns to determine—the (i, i) patterns

are all Eq, and each (i, j) pattern follows trivially from the (j, i) pattern.

3

that they usually (though not always) gave quite accurate bounds on leakage.
As an example, consider the “Mix and duplicate” case study:

Y = ((X >> 16) ^ X) & 0xffff;

Y = Y | Y << 16;

We translate this program into the following STP assertions, where we use the
symbol Y1 to denote the intermediate value of variable Y:2

X : BITVECTOR(32);

Y1, Y : BITVECTOR(32);

ASSERT(Y1 = BVXOR((X >> 16), X) & 0hex0000ffff);

ASSERT(Y = Y1 | (Y1 << 16));

We can then determine the bit-patterns for Y by making STP queries, which
ask whether a given property (e.g. “Y[3] = Y[19]?”) is a logical consequence
of the ASSERT statements. In [9], we used one or two STP queries to determine
each one-bit pattern, and then used a decision tree of at most four STP queries
to determine the two-bit pattern among each pair of non-fixed bits. Here it
turns out that all one-bit patterns are Non-fixed, and the only interesting two-
bit patterns are that bits i and i + 16 are equal, for 0 ≤ i ≤ 15; all others are
Free. Finally, we count the number of solutions to the two-bit patterns by using
the SatisfiabilityCount function of Mathematica. Here it is easy to see that
there are 216 solutions, implying that there are at most 216 feasible outputs and
hence that the leakage from X to Y is at most log 216 = 16 bits. (In this case, the
leakage bound happens to be exact.)

In spite of the successful case studies in [9], the scalability of the two-bit
pattern approach is a clear concern. Calculating the 32 one-bit and

(
32
2

)
= 496

two-bit patterns for the example above required a total of 2032 STP queries,
each taking around half a millisecond. A bit of thought, however, makes clear
that there is inefficiency in treating the two-bit patterns as being independent
of one another. For instance, if we know the patterns Leq(i, j), and Leq(j, k),
then we can immediately conclude Leq(i, k) by transitivity, without needing to
do additional STP queries. But how can we exploit such dependencies uniformly,
over all the various two-bit patterns (Neq, Nand, Geq, Or, . . .)? More generally,
are there effective ways to reduce the number of STP queries needed?

In this paper, we make four main contributions to the efficient calculation of
two-bit patterns:

1. We show how to represent the two-bit patterns as a directed implication
graph, as used in the study of the 2SAT problem. Nodes represent bits or
the negations of bits, and edges represent logical implication.

2. We show that random execution of the program allows us to fill in many en-
tries of the adjacency matrix representation of the implication graph without
using STP queries.

2 A fundamental limitation of this approach, of course, is that it requires us to unroll
any program loops completely.

4

3. We show that using STP counterexamples allows us to cheaply fill in many
additional entries of the adjacency matrix.

4. We show that, given a partially known adjacency matrix, we can perform
deductive closure to fill in additional entries whose value is a logical conse-
quence of the entries already known.

As we will see, these contributions enable us to reduce the time required for
two-bit pattern analysis in each of the case studies in [9]; the reduction averages
72%, and varies from 33% to 99%.

The rest of the paper is structured as follows: Section 2 presents implication
graphs and their semantic characterization; Section 3 presents the techniques of
random execution, STP counterexamples, and deductive closure; Section 4 gives
case studies; Section 5 describes related work; and Section 6 concludes.

2 Our Formal Framework

We model the set of feasible outputs of a program as a set R of states ρ. The
bits in a state are indexed by a set I of indices. (For example, for the 5-bit states
modeled in Figure 1, we would have I = {0, 1, 2, 3, 4}.) Formally, a state ρ is a
mapping: ρ : I → B, where B = {0, 1}.

2.1 Implication Graphs

It turns out that there are seven possible two-bit patterns among a pair of non-
fixed bits: Eq, Neq, Nand, Leq, Geq, Or, and Free. This diversity would seem to
complicate a simple representation. However, if we recall that implication and
negation are logically complete, we see that each two-bit pattern can be expressed
as a set of implications over literals, which are indices or negated indices:

Two-Bit Pattern Implications

Eq(i, j) i→ j, j̄ → ī, j → i, ī→ j̄

Neq(i, j) i→ j̄, j → ī, ī→ j, j̄ → i

Nand(i, j) i→ j̄, j → ī

Leq(i, j) i→ j, j̄ → ī

Geq(i, j) j → i, ī→ j̄

Or(i, j) ī→ j, j̄ → i

(Notice that Free(i, j) does not result in any implications.)
This translation enables us to represent a set of two-bit patterns as a di-

rected graph whose nodes are literals and whose edges represent implication;
such graphs are known as implication graphs in the study of the 2SAT problem
[11, 12]. As an example, Figure 2 shows the implication graph, in both graphical
and adjacency matrix representations, corresponding to the two-bit patterns in
Figure 1. (To avoid clutter, we omit self-loops in the graphical representation.)

5

4

4̄

1̄

1

0

0̄

2

2̄

4 2 1 0 4̄ 2̄ 1̄ 0̄

4 1 0 0 1 0 0 1 0
2 0 1 0 0 0 0 0 0
1 0 0 1 0 1 0 0 1
0 0 0 0 1 0 0 1 0
4̄ 0 0 0 0 1 0 0 0
2̄ 0 0 0 0 0 1 0 0
1̄ 0 0 0 1 0 0 1 0
0̄ 0 0 1 0 1 0 0 1

Fig. 2. The implication graph for {00010, 10001, 00001, 00110, 10101, 00101}

Implication graphs have the property of being skew-symmetric [13], since there
is an edge from i to j iff there is an edge from j̄ to ī.

The implication graph in Figure 2 omits mention of the fixed bit 3, since
fixed bits do not contribute to multiple outputs. But we could incorporate the
one-bit patterns into the implication graph if we wished to; for example, the
implication 3→ 3̄ expresses that bit 3 must be 0.

2.2 Semantic Characterization

To establish the correctness of our two-bit pattern analysis, we need a semantic
characterization of implication graphs (represented as adjacency matrices). To
use the language of abstract interpretation [14], we want to see implication graphs
as an abstract domain for the concrete domain of sets of states.

To facilitate this connection, we define literals Î = I∪{̄i | i ∈ I}. We moreover
extend states to Î by specifying that ρ(̄i) = ρ(i). Notice then that an implication
i→ j holds in state ρ iff ρ(i) ≤ ρ(j).

Now we define our abstraction function α that maps a set R of states to an
implication graph M :

Definition 1. Abstraction function α : P(Î → B)→ (Î × Î → B) is given by

α(R)ij =

{
1, if for all ρ ∈ R, ρ(i) ≤ ρ(j)
0, otherwise.

Next we define the concretization function γ that maps an implication graph
M to a set R of states:

Definition 2. Concretization function γ : (Î × Î → B)→ P(Î → B) is given by

γ(M) = {ρ | for all i, j, if Mij = 1 then ρ(i) ≤ ρ(j)}

(Note that 0s in M do not constrain the states.)

6

The key correctness property of the implication graph domain is given by
the following theorem, which ensures that when we calculate implication graph
M = α(R), where R is the set of feasible states, then we know that γ(M) is a
superset of R, implying that we thus over-approximate the set of feasible states.

Theorem 2. Given any set R of states, R ⊆ γ(α(R)).

Note, however, that the relationships specified in an arbitrary implication
graph M may be incoherent; for instance we might have Mij = 1 and Mjk = 1,
but Mik = 0. Hence we have the following definition.

Definition 3. Implication graph M is coherent if there exists a set R such that
M = α(R).

Coherent implication graphs behave well with respect to γ and α:

Theorem 3. If M is coherent, then α(γ(M)) = M .

3 Computing Implication Graphs Efficiently

We now consider the question of how we can efficiently compute the implication
graph for the set R of feasible outputs of a given program represented (as shown
in the “Mix and Duplicate” example in Section 1) as a set of STP assertions.

3.1 One-bit patterns, random execution, and STP counterexamples

As was shown in Figure 2, we include only the non-fixed bits in the implication
graph. This requires that we begin by determining the one-bit patterns for R.
For each bit i of output Y, we can first make STP query “Y[i] = 0?”. If this yields
valid, then bit i is Zero. If it yields invalid, then it is possible for bit i to be 1,
and we can make a second STP query “Y[i] = 1?” to determine whether bit i is
One or Non-fixed.

In the hope of avoiding the need for so many STP queries, however, we first
execute the program on a set of randomly-chosen inputs X. For each bit i of
Y, these random executions reveal at least one possible value, allowing us to
determine its one-bit pattern using just one STP query. And, if we are lucky,
the random executions may reveal that bit i can be both 0 and 1, allowing us
to conclude that it is Non-fixed without making any STP queries. (Of course,
the likelihood of this will depend on the probability distribution on Y, as many
programs produce certain values of Y with very low probability.) We found in our
case studies that doing 40 random executions typically gets most of the possible
benefit without costing very much, so that is the number of random executions
that we use in our implementation.

We can further improve efficiency by making use of STP counterexamples. If
we query “Y[i] = 0?” and STP returns invalid, then STP can give us, essentially
for free, a counterexample showing why the query is invalid. This gives us a new,
and probably rare, feasible output that we have not seen before. (Here it would
be an output where Y[i] = 1.) This output may well reveal that some other bits
of Y are Non-fixed, freeing us from the need to make queries about them.

7

3.2 Two-bit patterns and deductive closure

Our goal is to determine the implication graph M using as few STP queries as
possible. To this end, it is useful to extend to partially-known implication graphs,
where we use ⊥ to denote unknown entries. As in Figure 2, we limit M to the
non-fixed bits of Î, which we denote by ÎN . So, formally, M : ÎN × ÎN → B⊥,
where B⊥ is the flat domain {0, 1,⊥} with partial order ⊥ � 0 and ⊥ � 1. We
also extend � to implication graphs M pointwise.

When we are calculating the implication graph M of a set R of feasible
outputs, our strategy will be to populate M with ⊥s initially, and to fill in
entries so as to preserve the key invariant M � α(R), which says that every 0
and 1 entry in M accurately describes R.

The first entries that we can make in M are the trivial ones saying that, for
all literals i ∈ ÎN , Mii = 1 and Mīi = 0. (Mīi = 1 would imply that i is Zero.)

We can also fill in a large number of entries based on the random executions
and STP counterexamples described above. Suppose that we have found a fea-
sible output where bits i and j are 0 and 1, respectively. Then we can conclude
that Mji = 0 and Mīj̄ = 0. Indeed, every combination of values for bits i and j
allows us to deduce two 0s in M . Hence a single feasible output lets us fill in one
fourth of the nontrivial entries of M . (If there are n non-fixed bits, then M has
4n2 − 4n nontrivial entries, and a feasible output lets us fill in n2 − n of them.)
Additional feasible outputs let us fill in a variable number of additional entries,
depending on the particular patterns of bits that they exhibit.

Each remaining entry of M could of course be filled in by an STP query, but
we can do better by taking advantage of the dependencies among the entries.
Consider the partially-known implication graph in Figure 3, where the dashed

a b c

d

a b c d

a 1 1 ⊥ 1
b 0 1 1 0
c ⊥ 0 1 0
d 0 0 0 1

Fig. 3. A partially-known implication graph

edges denote edges whose existence/non-existence is unknown. If we consider the
unknown edge from a to c, we can easily deduce that it must exist, by transitivity.
More interestingly, we can also deduce that the unknown edge from c to a must
not exist. For an edge from c to a would by transitivity imply also an edge from
c to d, contradicting the known fact that there is no such edge.

These insights lead to two algorithms for deductive closure. The first, shown
in Algorithm 1, is Warshall’s classic transitive closure algorithm. The second,
shown in Algorithm 2, takes as input a transitive implication graph M and

8

Algorithm 1: DeductiveClosure1 algorithm

Input : implication graph M over non-fixed bits ÎN
Output: M with additional 1s implied by transitivity

for k ∈ ÎN do

for i ∈ ÎN do

for j ∈ ÎN do
if Mik = 1 ∧Mkj = 1 then

Mij ← 1;

Algorithm 2: DeductiveClosure2 algorithm

Input : transitive implication graph M over non-fixed bits ÎN
Output: M with additional 0s implied by transitivity

for k ∈ ÎN do

for i ∈ ÎN do

for j ∈ ÎN do
if (Mik = 0 ∧Mjk = 1) ∨ (Mki = 1 ∧Mkj = 0) then

Mij ← 0;

deduces additional 0 entries. To get some intuition, notice that when the first
disjunct of the if holds, then we have i 6→ k and j → k. Hence i→ j is impossible,
as this would yield i→ k by transitivity.

Let DC(M) denote the result of calling DeductiveClosure1(M) followed by
DeductiveClosure2(M). The soundness of DC is given by the following theorem,
which says that if implication graph M is correct for some set R of feasible
outputs, then so is DC(M); this implies that both the 0 and 1 entries filled in
by DC are correct for R.

Theorem 4. For all M and R, if M � α(R), then DC(M) � α(R).

We moreover conjecture that DC satisfies a completeness property saying that
it fills in as many 1 and 0 entries as can be done without violating soundness.
But we have yet not proved this.

Our algorithm for building the implication graph M is shown as Algorithm 3.
Notice that the selection of the ⊥ entry to fill in next is unspecified—our current
implementation does this randomly. Also, DC is invoked each time a new entry
of M is found, to see whether any additional entries can be deduced. However,
DeductiveClosure1 is invoked only if a new 1 entry was found, since otherwise it
cannot possibly deduce anything new. Note also that the else branch corresponds
to an invalid STP query, which gives us a new counterexample to exploit.

To show the correctness of Algorithm 3, note that the initialization of M
establishes M � α(R). Assuming that the STP queries are answered correctly,

9

Algorithm 3: Compute the implication graph

input : non-fixed bits ÎN for a set R of feasible outputs
output: implication graph M representing the two-bit patterns

for all i, j ∈ ÎN , Mij ← ⊥;

for all i ∈ ÎN , Mii ← 1, Mīi ← 0;
fill in the 0 entries in M determined by random executions and counterexamples;
while M has an entry with ⊥ do

select p, q ∈ ÎN with Mpq = ⊥;
if STP query reveals that bit p ≤ bit q in R then

Mpq ← 1;
Mq̄p̄ ← 1;
DeductiveClosure1 (M);
DeductiveClosure2 (M);

else
Mpq ← 0;
Mq̄p̄ ← 0;
get counterexample and use it to fill in more 0 entries of M ;
DeductiveClosure2 (M);

the assignments to Mpq and Mq̄p̄ preserve this invariant, as do the calls to DC,
by Theorem 4. Hence the algorithm terminates with M = α(R), as desired.

Having calculated the implication graph M , we next compute the size of
γ(M) by extracting the inequalities in M and counting the number of solu-
tions using Mathematica’s SatisfiabilityCount function. (Here we first com-
pact the inequalities by collapsing the strongly connected components of M and
taking the transitive reduction.) Finally, we compute the maximum leakage as
log |γ(M)|, since (by Theorem 2) the size of γ(M) is an upper bound on the
number of feasible outputs.

4 Case Studies

In [9], the authors presented 11 case studies testing both the accuracy and the ef-
ficiency of two-bit pattern leakage analysis.3 In that work, each two-bit pattern
was determined individually through STP queries. Here we assess the perfor-
mance benefits that result from using implication graphs, random execution,
STP counterexamples, and deductive closure.

The first point to make is that we are still doing the same two-bit pattern
analysis as before, which means that our upper bounds on leakage are exactly
the same as before. As discussed in [9], the bounds turn out to be accurate to
within one bit in all cases except for “Ten random outputs”, where the error
exceeds 15 bits.

3 The code for each case study, along with discussion, can be found in [9], available at
http://users.cis.fiu.edu/~smithg/papers/plas11.pdf.

10

Program O1 O2 OTotal N0 N1 N2 NTotal Reduction

Illustrative example 1072 1747 2819 1 805 398 1204 57%
Sanity check, base=0x00001000 33 21 54 1 28 7 36 33%
Sanity check, base=0x7ffffffa 66 2040 2106 2 4 197 203 90%
Implicit flow 12 16 28 1 7 3 11 61%
Population count 184 721 905 4 79 96 179 80%
Mix and duplicate 23 863 886 2 0 80 82 91%
Masked copy 9 114 123 2 2 6 10 92%
Binary search, b=16 246 4220 4466 1 21 2 24 99%
Electronic purse 210 62 272 4 153 0 157 42%
Sum query 135 100 235 1 113 4 118 50%
Ten random outputs (average) 91 3460 3551 1 7 216 224 94%

Table 1. Old and new times in ms to do two-bit pattern analysis: O1=old time for
one-bit patterns, O2=old time for two-bit patterns, OTotal=O1+O2, N0=new time
for random executions, N1=new time for one-bit patterns, N2=new time for two-bit
patterns, NTotal=N0+N1+N2, Reduction=1−NTotal/OTotal

Table 1 compares the times (in milliseconds) to do two-bit pattern analysis
using our old and new techniques.4 As can be seen, the times are reduced in all
11 case studies, by an average of 72%; in five cases, the reduction exceeds 90%.
But the reductions are quite variable, ranging from 33% to over 99%.

One way to understand the varied effectiveness of the different techniques
that we are using is to consider what percentage of the non-trivial entries of the
implication graph M are found by random execution, by STP counterexamples,
by STP queries, and by deductive closure. Table 2 gives this information. It
shows that the percentage of entries found by random execution varies greatly,
from as little as 25% to as much as 100%. STP counterexamples contribute
between 0% and 70%. As for deductive closure, it contributes in only two of the
case studies, but this is mostly a function of the fact that random execution
and STP counterexamples often fill in almost all of M . To see what contribution
deductive closure could have made, we repeated the experiments with random
execution and STP counterexamples disabled. As seen in P4*, deductive closure
could have made a significant contribution in five of the case studies.

To better understand these results, consider the “Sanity Check” program:

if (X < 16)

Y = base + X;

else

Y = base;

where base is a constant. On this program, random execution will have little
benefit, since a randomly-chosen 32-bit value for X is highly unlikely to be less

4 The times reported here for our old analysis (O1 and O2) are faster than those
reported in [9], because we have redone our old experiments on a faster computer: a
2.3 GHz Intel Core i3-2310M. Also, because of the randomness in our new techniques,
the new timings (N0, N1, and N2) are averages over 10 executions.

11

Program P1 P2 P3 P4 P3* P4*

Illustrative example 25 57 18 0 67 33
Sanity check, base=0x00001000 25 50 25 0 100 0
Sanity check, base=0x7ffffffa 25 35 4 36 7 93
Implicit flow 25 58 17 0 100 0
Population count 80 10 10 0 88 12
Mix and duplicate 98 2 0 0 57 43
Masked copy 100 0 0 0 100 0
Binary search, b=16 100 0 0 0 100 0
Electronic purse 100 0 0 0 100 0
Sum query 97 3 0 0 100 0
Ten random outputs (average) 25 70 3 2 53 47

Table 2. Average percentage of M found by different techniques: P1=entries found by
random execution, P2=entries found by STP counterexamples, P3=entries found by
STP queries, P4=entries found by deductive closure. P3* and P4* are the same as P3
and P4, but with random execution and STP counterexamples disabled.

than 16—this is why P1 is just 25% here. STP counterexamples, on the other
hand, contribute significantly. Finally, the contribution of deductive closure de-
pends on the bit patterns, which in turn depend on the value of base. When
base is 0x00001000, only the rightmost four bits of Y are non-fixed, and their
two-bit patterns are all Free, preventing deductive closure from deducing any-
thing; hence we see only a 33% time reduction with this base. When base is
0x7ffffffa, on the other hand, the situation is more interesting—all bits are
non-fixed and the two-bit patterns are complex (involving Eq, Neq, Leq, Or, and
Free patterns) since the possibility of a string of carries leads to many depen-
dencies among the bits of Y. As a result, deductive closure is very helpful here,
finding 36% of the entries, and resulting in a time reduction of 90%.

To see the opposite extreme, consider the “Binary Search, b=16” program.
This program has 16 if statements that carry out 16 iterations of binary search,
copying the leftmost 16 bits of X to Y:

Y = 0;

if (Y + 2147483648 <= X) Y += 2147483648; // 2^31

if (Y + 1073741824 <= X) Y += 1073741824; // 2^30

if (Y + 536870912 <= X) Y += 536870912; // 2^29

...

if (Y + 65536 <= X) Y += 65536; // 2^16

Here we find that the rightmost 16 bits of Y are Zero, while the leftmost 16
bits are non-fixed, with only Free patterns between them. As a result, deductive
closure cannot deduce anything. But random execution, in contrast, is highly
effective—it usually finds enough feasible outputs to fill in all of the entries of
M . Because STP queries on this program are very expensive (after all, it has 216

possible execution paths), avoiding them is very beneficial, reducing the analysis
time by more than 99%.

12

5 Related Work

While Yasuoka and Terauchi [15] show that (as one would expect) leakage anal-
ysis is computationally difficult, the area is now seeing considerable progress,
both in the context of deterministic imperative programs [16–21] and probabilis-
tic systems [22–24]. Techniques currently being explored include model checking,
statistical sampling, symbolic execution, and abstract interpretation.

We briefly mention some recent works that focus, as we do, on the calculation
of the capacity of deterministic programs. Newsome, McCamant, and Song [17]
use a variety of heuristic techniques to estimate the capacity of deterministic
x86 binaries; their motivation is actually quantitative integrity. Heusser and
Malacaria [19] use model-checking techniques to test whether the capacity of a
deterministic program exceeds a specified threshold, which needs to be small for
the analysis to be feasible. Köpf, Mauborgne, and Ochoa [20] develop an abstract
interpretation for bounding capacity, and use it to show bounds on cache leaks in
implementations of the AES cryptosystem. Finally, Phan, Malacaria, Tkachuk,
and Păsăreanu [21] count the number of feasible program outputs through a
symbolic execution technique that is more precise than two-bit patterns, though
often more expensive.

6 Conclusion

We have shown that implication graphs, random execution, STP counterexam-
ples, and deductive closure allow two-bit pattern analysis to be done more effi-
ciently. Experiments on a set of 11 case studies show a substantial benefit from
the new techniques, with time reductions averaging 72%, and often exceeding
90%. We expect that these improvements will be increasingly important as we
scale up to larger and more complex programs.

In future work, we would like to show the completeness of deductive closure,
and to improve its efficiency by computing it incrementally. Still, as we scale
to complex programs, it is clear that STP queries (and STP counterexamples)
about the entire program will ultimately become infeasible. For this reason, we
are also interested in exploring the possibility of doing an approximate two-bit
pattern analysis as a compositional abstract interpretation over the domain of
implication graphs.

Acknowledgments: This work was partially supported by the National
Science Foundation under grant CNS-1116318.

References

1. Clark, D., Hunt, S., Malacaria, P.: Quantitative information flow, relations and
polymorphic types. Journal of Logic and Computation 18(2) (2005) 181–199

2. Köpf, B., Basin, D.: An information-theoretic model for adaptive side-channel at-
tacks. In: Proc. 14th ACM Conference on Computer and Communications Security
(CCS ’07). (2007) 286–296

13

3. Smith, G.: On the foundations of quantitative information flow. In de Alfaro,
L., ed.: Proc. 12th International Conference on Foundations of Software Science
and Computational Structures (FoSSaCS ’09). Volume 5504 of Lecture Notes in
Computer Science. (2009) 288–302

4. Alvim, M., Andrés, M., Palamidessi, C.: Probabilistic information flow. In: Proc.
25th IEEE Symposium on Logic in Computer Science (LICS 2010). (2010) 314–321

5. McIver, A., Meinicke, L., Morgan, C.: Compositional closure for Bayes risk in
probabilistic noninterference. In: Proc. ICALP’10. (2010) 223–235

6. Clarkson, M.R., Schneider, F.B.: Quantification of integrity. In: Proc. 23nd IEEE
Computer Security Foundations Symposium (CSF ’10). (2010) 28–43

7. Braun, C., Chatzikokolakis, K., Palamidessi, C.: Quantitative notions of leakage
for one-try attacks. In: Proc. 25th Conference on Mathematical Foundations of
Programming Semantics (MFPS 2009). Volume 249 of ENTCS. (2009) 75–91

8. Alvim, M.S., Chatzikokolakis, K., Palamidessi, C., Smith, G.: Measuring infor-
mation leakage using generalized gain functions. In: Proc. 25th IEEE Computer
Security Foundations Symposium (CSF 2012). (June 2012) 265–279

9. Meng, Z., Smith, G.: Calculating bounds on information leakage using two-bit
patterns. In: Proc. Sixth Workshop on Programming Languages and Analysis for
Security (PLAS ’11). (2011) 1:1–1:12

10. Ganesh, V., Dill, D.L.: A decision procedure for bit-vectors and arrays. In: Proc.
19th International Conference on Computer Aided Verification (CAV 2007). Vol-
ume 4590 of Lecture Notes in Computer Science. (2007) 524–536

11. Krom, M.R.: The decision problem for a class of first-order formulas in which all
disjunctions are binary. Zeitschrift für Mathematische Logik und Grundlagen der
Mathematik 13 (1967) 15–20

12. Aspvall, B., Plass, M.F., Tarjan, R.E.: A linear-time algorithm for testing the truth
of certain quantified boolean formulas. Information Processing Letters 8(3) (1979)
121–123

13. Goldberg, A.V., Karzanov, A.V.: Path problems in skew-symmetric graphs. Com-
binatorica 16(3) (1996) 353–382

14. Cousot, P., Cousot, R.: Basic concepts of abstract interpretation. In: Building the
Information Society. Kluwer Academic Publishers (2004) 359–366

15. Yasuoka, H., Terauchi, T.: Quantitative information flow — verification hardness
and possibilities. In: Proc. 23nd IEEE Computer Security Foundations Symposium
(CSF ’10). (2010) 15–27

16. Backes, M., Köpf, B., Rybalchenko, A.: Automatic discovery and quantification
of information leaks. In: Proc. 30th IEEE Symposium on Security and Privacy.
(2009) 141–153

17. Newsome, J., McCamant, S., Song, D.: Measuring channel capacity to distinguish
undue influence. In: Proc. Fourth Workshop on Programming Languages and
Analysis for Security (PLAS ’09). (2009) 73–85

18. Köpf, B., Rybalchenko, A.: Approximation and randomization for quantitative
information-flow analysis. In: Proc. 23nd IEEE Computer Security Foundations
Symposium (CSF ’10). (2010) 3–14

19. Heusser, J., Malacaria, P.: Quantifying information leaks in software. In: Proc.
ACSAC ’10. (2010) 261–269

20. Köpf, B., Mauborgne, L., Ochoa, M.: Automatic quantification of cache side-
channels. In: Proc. 24th International Conference on Computer-Aided Verification
(CAV ’12). (2012) 564–580

14

21. Phan, Q.S., Malacaria, P., Tkachuk, O., Corina S. Păsăreanu, C.S.: Symbolic quan-
titative information flow. SIGSOFT Software Engineering Notes 37(6) (November
2012) 1–5

22. Chatzikokolakis, K., Chothia, T., Guha, A.: Statistical measurement of information
leakage. In Esparza, J., Majumdar, R., eds.: Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS ’10). Volume 6015 of Lecture Notes in
Computer Science. (2010) 390–404

23. Andrés, M., Palamidessi, C., van Rossum, P., Smith, G.: Computing the leakage
of information-hiding systems. In Esparza, J., Majumdar, R., eds.: Tools and
Algorithms for the Construction and Analysis of Systems (TACAS ’10). Volume
6015 of Lecture Notes in Computer Science. (2010) 373–389

24. Mardziel, P., Magill, S., Hicks, M., Srivatsa, M.: Dynamic enforcement of
knowledge-based security policies. In: Proceedings of the Computer Security Foun-
dations Symposium (CSF ’11). (June 2011) 114–128

