
An Empirical Bandwidth Analysis of
Interrupt-Related Covert Channels

Richard Gay, Heiko Mantel, and Henning Sudbrock

Department of Computer Science, TU Darmstadt, Germany
{gay,mantel,sudbrock}@mais.informatik.tu-darmstadt.de

Abstract We empirically evaluate interrupt-related covert channels, in
short IRCCs, a type of covert channel that leverages hardware interrupts
for communication. The evaluation is based on an exploit of IRCCs that
we implemented as a proof-of-concept. We use a combination of exper-
imental evaluation and information-theoretic analysis to compute the
bandwidth of the channel on a concrete system. Our analysis shows a
channel bandwidth of IRCCs based on interrupts of network interface
cards (NICs) of approximately 5 bit/s. Besides the channel bandwidth,
our experiments revealed previously unnoticed properties of IRCCs based
on interrupts of NICs. While side channels based on hardware interrupts
have been discussed before, this is the first experimental evaluation of
covert channels based on hardware interrupts.

1 Introduction

A main goal of computer architectures is an efficient use of limited resources
such as computation time and storage capacity. Hardware and operating sys-
tems therefore implement a sharing of hardware resources such as the CPU or
main memory among running processes. Regarding the security of a system, this
efficiency however comes at a cost: Shared resources can be used by malicious
computer programs to establish covert communication channels [Lam73] that
circumvent the system’s security mechanisms.

When assessing a system with respect to the security it provides, covert
channels must be taken into account. Completely eliminating covert channels is
often impracticable when a certain level of efficiency shall be maintained. Instead,
one may aim at finding an acceptable compromise in the trade-off between the
efficiency of the system and the severity of covert channels by quantitatively
assessing covert channels.

In this paper, we investigate interrupt-related covert channels [MS07, MS09],
which exploit that operating system and userland processes typically share CPUs.
These channels leverage that hardware devices communicate with the operating
system via asynchronous interrupts, hence the channel’s name. A sender of the
channel can instruct the operating system to invoke an operation on a hardware
device that, upon completion, triggers an interrupt to the operating system. A
receiver of the channel, that executes on the same CPU as the operating system,
can notice the interruption and thereby obtain information from the sender.

2

Interrupt-related covert channels (IRCCs) have been studied with respect
to their theoretically achievable bandwidth and countermeasures against them
[MS07, MS09, MSS+08]. IRCCs build on the interplay between hardware devices,
operating systems, and userland processes. In recognition of this complexity, we
find an empirical evaluation crucial for assessing the significance of IRCCs in
real systems.

In this paper, we quantitatively assess IRCCs based on experimental evalu-
ations. The main contributions of this paper are
– a proof-of-concept exploit of interrupt-related covert channels based on in-

terrupts of network interface cards (NICs),
– an evaluation of the IRCC exploit combining experiments with a bandwidth

analysis based on Shannon’s information theory [Sha48], and
– two previously unnoticed properties of IRCCs based on NIC interrupts.

In particular, our evaluation combines empirical and analytic elements to com-
pute channel bandwidths. Empirical results provide lower bounds for the achiev-
able channel performance. In contrast, the analytic evaluation assumes the worst
case for the attacker’s capabilities of exploiting the channel in the sense that he
may choose an ideal information encoding for transmissions. Overall, our results
indicate that IRCCs can constitute a realistic threat to the confidentiality of
secret information like passwords and secret keys.

2 Background

Covert channels. The consideration of covert channels in information systems
can be traced back to Lampson [Lam73]. Since then, the identification, analysis,
mitigation, and implementation has received great attention in computer security
[Gli93, McH95, Kem83]. Among others, channels based on shared CPUs [Hus78],
shared caches [KMO12], shared buses [Hu91], shared hard disks [KW91], have
been identified and studied.

Interrupt-related covert channels. IRCCs are covert channels based on asyn-
chronous hardware interrupts [MS07, MS09, Gay08]. These interrupts are raised
by hardware devices such as network interface cards (NICs) or hard disks. Upon
occurrence, they interrupt the CPU in executing userland or operating system
processes. The interruption signals to the operating system that it can take care
of the changed state of the respective hardware device.

Figure 1 illustrates how IRCCs exploit hardware interrupts for covert com-
munication. When the sender wants to transmit the binary digit 1, it requests
the operating system to initiate an operation of a hardware device and yields the
CPU immediately afterwards. While the operation is still ongoing, the operating
system then switches the execution to the receiver. Once the hardware device
finishes its task and triggers a hardware interrupt, the operating system stops
executing the receiver, performs some device-specific operations and finally re-
sumes the receiver. The induced delay of its execution can be detected by the
receiver and its existence could be evaluated as a 1 being transmitted.

3

time

C
P

U

sender:

receiver:
. . .

bit 0 7→ 1 bit 1 7→ 0 bit 2 7→ 1

OS:

hardware
device:

interrupt interrupt

Figure 1: IRCC transmission schema

When the sender wants to transmit the digit 0, it simply does not perform
an operation that would cause an interrupt. The receiver can then determine the
absence of an interruption.

Analytic evaluation of IRCCs. Mantel and Sudbrock [MS07, MS09] develop a
formal information-theoretic framework for analyzing the bandwidth of IRCCs.
They use the framework to derive upper bounds on the bandwidth of IRCCs.
Moreover, using such upper bounds they evaluate the effectiveness of counter-
measures that are intended to mitigate the capacity of IRCCs. They also in-
vestigate refinements of the information-theoretic model that take into account
peculiarities of the environment in which an IRCC is exploited.

Experimental evaluation of IRCCs. We are aware of only two evaluations of
interrupt-related channels in the literature. Molter et al. [MSS+08] empirically
evaluate a hardware component as a countermeasure against IRCCs. The eval-
uation focuses on changes of measured interrupt durations due to the counter-
measure. An evaluation of an IRCC channel is beyond the scope of the paper.

Trostle [Tro98] experimentally evaluates interrupt durations of a side channel
based on keyboard interrupts. In this setting, the “sender” is a victim typing,
e.g., her password and is, thus, not deliberately participating in the transmission
over the channel. In contrast, the sender in our setting is actively participating
in the transmission.

Countermeasures against IRCCs. The mitigation of IRCCs has been studied in
the literature. Proposed countermeasures include changes in the time granularity
available to processes, polling of hardware devices [MS07], and special-purpose
hardware devices for interrupt handling [MSS+08]. In the current paper, we
instead focus on the evaluation of IRCCs based on practical experiments as we
consider this a gap in the literature’s treatment of IRCCs.

3 The IRCC Exploit

We developed an exploit of IRCCs that consists of a sender program and a
receiver program. The exploit transmits bit sequences from the sender to the

4

receiver under the assumption that both processes are executed on the same
computer and that this computer as a single CPU. The transmission is unidirec-
tional from the sender to the receiver. In absence of feedback from the receiver,
the exploit transmits a bit sequence in consecutive time intervals of a fixed du-
ration tbit for each bit.

For establishing the channel, the exploit uses hardware interrupts of a wired
network interface card (NIC). A NIC triggers a hardware interrupt when a packet
has successfully been sent over the wire in order to inform the operating system
that waiting queued packets can be sent.

Attacker model. We consider an attacker who is interested in confidential infor-
mation stored on a computer system. The attacker is able to deploy the IRCC
sender as a Trojan horse that can access the data. He is able to deploy the IRCC
receiver on the same computer system. We assume that the deployed sender is
unable to communicate the confidential information directly to the attacker or
to the receiver by means of overt communication channels. The receiver does not
have access to the confidential information but is able to send all information
that it gets to the attacker. Finally, the attacker is able to encode and decode
the input and output to the IRCC in an efficient way that allows to compensate
transmission errors. That is, we assume that sender and receiver are already
running. How to inject them into the target system is outside the scope of this
paper. For instance, sender and receiver could be Trojan horses.

3.1 Fixed-Timeslice Scheduling

In this paper, we assume a setting, where side channels and other channels
with substantial bandwidth have been addressed. In particular, we assume that
quantum-time channels [Hus78] are ruled out by a scheduler that (a) assigns time
slots, so called timeslices, of fixed length to processes and (b) does not permit a
process to yield the CPU to another process prematurely. In the following, we
refer to this concept as fixed-timeslice scheduling.

Remark 1. A quantum-time channel (QTC) is a covert channel that relies on a
sender and a receiver process being executed on the same CPU. The sender of
a QTC transfers information to a corresponding receiver by varying its time of
CPU usage until it yields the CPU. The receiver detects this amount of time by
measuring the time that it has not been running in favor of the sender. ♦

We implemented fixed-timeslice scheduling as a modification of the Linux
scheduler. A vanilla Linux 2.6.22.9 kernel served as the basis for the modification.
We make three modifications to the O(1) scheduler [BC05, Ch. 6] of this kernel.
Firstly, we add code for distinguishing IRCC sender processes, IRCC receiver
processes, and other processes by their effective group ID. Secondly, we enforce
priority-independent timeslice lengths of tslice = 100ms for all IRCC processes.
This includes blocking potential IRCC receiver processes from being scheduled
as long as the preceding sender’s timeslice has not elapsed. Thirdly, we disable

5

1 vo id send (data []) {
2 wa i t_un t i l (t0) ;
3 wh i l e (ge t t ime () < t0 + l eng t h (data) ∗ tbit) {
4 s ched_y i e l d () ;
5 wa i t_un t i l (g e t t ime () + tslice − δ) ;
6 i d x = (ge t t ime () − t0) / tbit ;
7 i f (data [i d x] == 1)
8 g e n e r a t e_ i n t e r r u p t () ;
9 } }

Listing 1: Pseudocode of the main IRCC sender routine

dynamic process priorities, i.e., priorities varying due to a process’s recent CPU
consumption, for all IRCC processes.

Fixed-timeslice scheduling enables a stable number of sender-receiver rounds
within multiples of 2 tslice through the second modification. Furthermore, the
time made available to a sender or receiver process is independent from the
process’s previous time consumption due to the third modification. Both aspects
simplify the later model and analysis of the channel in Section 4.2.

3.2 The IRCC Sender

The sender of the exploit uses an IRCC channel to transmit a given sequence of
bits. Listing 1 shows a pseudocode version of the IRCC sender. The data param-
eter holds the bit sequence to be transmitted. The code consists of three main
parts. The first part determines the start and end of the transmission interval
for the bit sequence (lines 2–3). The second part synchronizes the execution of
the sender with the end of every timeslice (lines 4–5). The third part generates
an interrupt if, when executing the code, a 1 is to be transmitted (lines 6–8).

For establishing the IRCC, sender and receiver must execute at the same
time. We synchronize their execution by first waiting for an agreed starting time
t0 of the transmission (line 2). The starting time could, e.g., be a full hour. The
sender terminates its execution when all bits are transmitted. Line 3 checks this
condition by querying the system clock.

The sender has to generate the interrupt at a point in time that makes the
interrupt occur while the receiver is executing. With fixed-timeslice scheduling,
we therefore generate interrupts always a certain amount of duration δ before
the end of timeslices. For this, line 4 instructs the operating system to yield the
CPU1 such that when the execution of the sender is resumed in line 5, then
this is within a fresh timeslice. Line 5 then waits for an amount δ less than the
timeslice length tslice. The following code is therefore executed an approximate
duration δ before the end of the sender’s timeslice.

Whether an interrupt has to be generated or not at some point in time
depends on whether that time falls into the interval of a 0 bit or a 1 bit. This
1 Note that due to fixed-timeslice scheduling, the CPU remains unused until the full
timeslice has elapsed and the next process is only resumed afterwards. For our pur-
poses here, it is only important that line 5 starts at the beginning of a timeslice.

6

1 vo id r e c e i v e (count s []) {
2 wa i t_un t i l (t0) ;
3 wh i l e (ge t t ime () < t0 + l eng t h (count s) ∗ tbit) {
4 dt = measure_durat ion (i t e r s) ;
5 i f (dt >= t−int && dt <= t+int) {
6 i d x = (ge t t ime () − σ − t0) / tbit ;
7 count s [i d x] += 1 ;
8 } } }

Listing 2: Pseudocode of the main IRCC receiver routine

is determined in lines 6–7. Finally, the generate_interrupt function generates the
actual interrupt. This is done by the sendto system call with which we send a
UDP packet with 1450B of zeros.

3.3 The IRCC Receiver

The receiver of the exploit detects and records interruptions of its executions
that are supposed to be caused by hardware interrupts generated by the IRCC
sender. Listing 2 shows a pseudocode version of the IRCC receiver. The code
returns an array holding the number of counted interrupts for every bit interval.
The code consists of three main parts. The first part determines the start and
end time of the transmission interval for the bit sequence (lines 2–3) and is the
same as for the IRCC sender. The second part measures whether the execution
time of a fixed portion of code was interrupted for a relevant duration (lines 4–5).
The third part counts a relevant interrupt for the respective bit interval during
which the interrupt occurred (lines 6–7).

The key element of the IRCC receiver is the second part. The actual measur-
ings are performed by measure_duration, whose idea is to measure the execution
time of a constant portion of code. The function computes and returns the differ-
ence dt between measured and uninterrupted duration (tu). That is, if a hardware
interrupt occurs during a measuring, then the measuring function returns the
approximate duration of the interruption. If dt falls into the interval [t−int, t

+
int],

then it is considered an interrupt generated by the sender. This interval thus
captures possible durations for interrupts generated by the sender.

A notable difference of the third part compared to the IRCC sender is the
σ in line 6. This parameter introduces an offset between the bit intervals in the
as seen by the sender and by the receiver. This offset captures that a certain
amount of time elapses between the generation of an interrupt by the sender and
the occurrence of the interrupt.

4 Experimental and Analytical Evaluation

The performance of our IRCC exploit depends on many aspects such as the
configuration of the IRCC exploit itself, the compilation of the exploit into exe-
cutable code, the scheduling of processes by the operating system, the behavior

7

experiment number of counted interrupts
send 0 send 1

tu [µs] 0 1 0 1 2 3

1-1
0.183

8000 0 166 1929 5904 1
1-2 8000 0 161 1965 5874 0

2-1
1.823

8000 0 0 288 7712 0
2-2 8000 0 10 317 7673 0

3-1
181.2

8000 0 0 16 7984 0
3-2 8000 0 4 47 7949 0

4-1
724.8

8000 0 6 39 7955 0
4-2 7999 1 6 37 7957 0

5-1
1105

8000 0 1 161 7838 0
5-2 8000 0 9 553 7438 0

Table 1: Counted interrupts when transmitting (10)8000 with the IRCC exploit

of other processes in the system, the behavior of the NIC in sending out network
packets and in triggering hardware interrupts, and interrupts generated by other
hardware devices such as timers or input devices. Given these complex depen-
dencies, we aim for an experimental evaluation of the IRCC exploit to determine
the performance of the exploit quantitatively.

In the following, we show the results of the experimental evaluation and
analyze the channel’s bandwidth using an information-theoretic model.

Experimental setup. We conducted all shown experiments on a desktop com-
puter with a 1400MHz CPU, 512MB of main memory, and a 10Mbit/s NIC.
As operating system, we employed the modified Linux 2.6.22.9 kernel from Sec-
tion 3.1 as part of a Gentoo Linux system. Running software besides the IRCC
exploit was configured to default kernel threads, the udev device file system (ver-
sion 119), and bash (version 3.2). For the compilation of the IRCC exploit from
the source code, we used gcc 4.1.2 and binutils 2.18.

4.1 Experimental Determination of Channel Properties

We experimentally determine how many interrupts are detected by the IRCC
receiver when the IRCC sender sends a 1 or, respectively, 0. More precisely, we
use the exploit to transmit the sequence (10)k for k = 8000 samples. The time
interval for each bit is tbit = 4 · tslice = 400ms. That is, both sender and receiver
can execute for at most two timeslices per bit and the sender can generate at
most N = 2 interrupts for every bit. Concerning the remaining parameters of the
exploit, we experimentally determined the following values to yield good results:
δ = 40µs + tg where tg is the runtime of generate_interrupt, t−int ≈ 15.56µs,
t+int ≈ 16.34µs, and σ = 2ms. Based on these parameters, we compare the
channel properties for different settings of the receiver’s iters parameter, which
yields different uninterrupted durations tm of the receiver’s measuring function
measure_duration (Listing 2). For each setting, we conducted two transmissions.

8

If the channel was flawless, then sending a 0 would cause 0 interrupts to be
counted for all 8000 0s. Sending a 1 would cause N = 2 interrupts to be counted
for all 8000 1s. Table 1 shows the actual results of our experiments.

The experiments show that in overall only two cases (experiments 1-1 and
4-2), more interrupts were counted than were actually generated. In contrast,
all of the experiments show that some generated interrupts were not counted
by the receiver. The concrete number of missed interrupts turned out to depend
on the measuring duration. Note that experiment 3-1 shows a particularly low
interrupt miss ratio of 0.2%.

By using an appropriate channel encoding, an attacker could run the ex-
ploit and compensate transmission errors caused by missed interrupts. In the
following, we therefore analyze the maximum bandwidth that an attacker could
achieve for the empirically determined channel of Table 1.

4.2 Analysis of IRCC Channel Bandwidth

For the analysis of the bandwidth, we employ a model of a discrete memoryless
channel [CT06], which we introduce first. Afterwards, we adapt the model for
our concrete setting based on the experimentally determined transition matrices.

A communication channel can be represented by a triple of possible in-
puts, possible outputs, and a model of the relationship between inputs and
outputs. A discrete channel is a communication channel with discrete input
alphabet I and discrete output alphabet O. The channel is memoryless if the
relationship between inputs and outputs can be expressed by a transition matrix
P = (p(y|x))x∈I, y∈O, where p(y|x) is the conditional probability of obtaining
output y ∈ O given input x ∈ I. That is, an output depends only on the re-
spective current input but not on previous or future inputs or outputs of the
channel.

A model for the exploit’s channel. We model the channel established by the
IRCC exploit as a discrete memoryless channel where the input alphabet is
I = {0,1} and the output alphabet is O = {0, 1, . . . , N}. Inputs capture single
bits while outputs capture the number of counted interrupts, which is bounded
by the maximum number N of interrupts generated by the sender when send-
ing a 1. We model the transition matrix P such that p(Y=0|X=0) = 1 and
p(y|X=1) =

(
N
y

)
(1− λ)yλN−y for y ∈ O. That is, the number of counted inter-

rupts follows a binomial distribution parametric in λ, which models the probabil-
ity of a single interrupt being missed by the receiver. The binomial distribution
models stochastic independence of pairs of missed interrupts.

Lemma 1. Let λ ∈ [0, 1) and N ∈ N. Then the capacity of the discrete memo-
ryless channel (I,O, P) is

Cap(I,O, P) = −(1− π ¯̀) log(1− π ¯̀) + π` log `+ π ¯̀log π

where ` = p(Y=0|X=1) = λN , ¯̀= 1− `, and π = (¯̀+ `−`/
¯̀
)−1. ♦

A proof of the lemma can be found in the appendix.

9

capacity [bit] bandwidth [bit/s]
experiment λ G N=1 N=2 N=1 N=2

1-1 14.13% 0.05 0.698 0.930 3.491 2.324
1-2 14.29% 0.05 0.696 0.928 3.478 2.321

2-1 1.80% 5.28 0.935 0.998 4.676 2.495
2-2 2.11% 8.33 0.927 0.997 4.633 2.493

3-1 0.10% 0.02 0.994 1.000 4.972 2.500
3-2 0.34% 23.32 0.983 1.000 4.917 2.500

4-1 0.32% 42.79 0.985 1.000 4.923 2.500
4-2 0.31% 43.87 0.985 1.000 4.925 2.500

5-1 1.02% 0.03 0.959 0.999 4.796 2.948
5-2 3.57% 0.15 0.889 0.993 4.447 2.482

Table 2: IRCC channel properties under discrete memoryless channel model

The model in the experiments. Using the maximum-likelihood estimator of the
binomial distribution [Hoe66, 3.3], we instantiate the model by computing λ =
ȳ/N , where N = 2 and where ȳ is the average number of interrupts counted for
input 1 in Table 1. Based on Lemma 1, we compute the capacity of the channel.
The bandwidth of the channel can then be computed as B = Cap /(N · tslice).

Table 2 shows the results of the analysis for the different experiments. The
estimated probability λ of missing an interrupt in the receiver ranges from about
0.1% to about 14.29%. The corresponding channel bandwidths peak at approx-
imately 2.5bit/s for N=2, which we used in the experiments. When we transfer
the values of λ to N=1, then computed bandwidths peak at 4.972 bit/s.

Adequacy of the model. The model makes two assumptions: first, at most as
many interrupts can be counted as are generated by the sender. Second, misses
of interrupts are stochastically independent. We see the first assumption as valid,
given that the experiments only showed very rare cases in which one additional
interrupt was counted.

The second assumption simplifies the transition matrix to a binomial distri-
bution of counted interrupts when 1 is sent. Goodness of fit tests [Hoe66, Wik13]
support this assumption for half of the experiments (where G < 3.84).

4.3 Findings

Besides the probabilities of interrupts being missed, our experiments with the
IRCC exploit revealed further properties of IRCCs that use NIC interrupts.

Interrupt time frames. Depending on properties of the NIC, the operating sys-
tem’s scheduling, and the precision of the IRCC sender, we speculated that
interrupts might occur only within a limited time frame of the receiver’s times-
lices. We conducted experiments with a modified IRCC receiver, in which we
measured at what times interrupts occurred relatively to the beginning of the
receiver’s timeslices. Our experiments show that the interrupts generated by the

10

sender occurred only during a relatively short time frame of about 33µs within
the succeeding receiver timeslice. The standard deviation of occurrence times
from the mean time turned out to be only 0.92µs.

Based on the knowledge about the narrow time frame, we assume that an
augmented exploit could reach significantly higher bandwidths by encoding in-
formation in the time at which the interrupt is generated by the sender (i.e., by
varying the δ parameter in Listing 1).

Multiple interrupts. Depending on the interrupt source chosen for the channel
it may be possible to generate multiple interrupts at once. With our IRCC ex-
ploit based on NIC interrupts, we discovered that sending a payload that would
exceed the maximum transmission unit leads to multiple packets being sent and
one interrupt being caused for each packet. Experiments involving the generation
of four NIC interrupts showed very low standard deviations for the delay until
the interrupt occurrences (less than 5µs) and for the respective interruption du-
rations (less than 0.3µs). Delays and durations of all four interrupts furthermore
assumed values from mutually disjoint ranges.

We assume that an augmented exploit could leverage the possibility of send-
ing several interrupts to transmit more information within a single pair of sender
and receiver timeslices.

5 Conclusion

Previous works on IRCCs provide worst-case results for the bandwidth of IRCCs
based on formal models of the channel [MS07, MS09]. To substantiate the rele-
vance of IRCCs as a non-negligible threat for information systems, we show based
on an implemented exploit that IRCCs are feasible in practice. Our experimen-
tal and analytical evaluation shows bandwidths of approximately 5bit/s, which
suffice to disclose data such as passwords or private keys within an acceptable
amount of time.

In this paper, we use NIC interrupts for establishing an IRCC. Typical sys-
tems contain other devices such as hard disks that use hardware interrupts. IRCC
exploits could use these devices instead or in addition. As such, our results con-
stitute a lower bound on the bandwidth of IRCCs. In our setup, the few running
processes do not create a large amount of noise. The presence of noise caused by
other processes would reduce the bandwidth but we expect it to not completely
eliminate the channel. Such noise can be countered by tailored encodings from
information theory [CT06]. For our setup, we used fixed-timeslice scheduling.
In a setting without fixed-timeslice scheduling, higher bandwidths of IRCCs are
achievable due to shorter timeslices. In addition, quantum-time channels could
be used for transmitting information.

Our findings in Section 4.3 reveal two properties of IRCCs based on NIC
interrupts: IRCCs can exploit the point in time at which an interrupt occurs as
well as how an interrupt relates to preceding or following interrupts. This allows
an IRCC to encode more information in a single interrupt and thereby increase

11

the bandwidth. To our knowledge, these properties have not previously been
noticed for IRCCs.

Acknowledgments. This work was funded by the DFG under the project FM-
SecEng in the Computer Science Action Program (MA 3326/1-3).

References
[BC05] D. P. Bovet and M. Cesati. Understanding the Linux Kernel. O’Reilly &

Associates, third edition, 2005.
[CT06] T. M. Cover and J. A. Thomas. Elements of Information Theory. Wiley-

Interscience, second edition, 2006.
[Gay08] R. Gay. Interrupt-Related Covert Channels from an Attacker’s Perspective.

Diploma thesis, RWTH Aachen, December 2008.
[Gli93] V. Gligor. A Guide to Understanding Covert Channel Analysis of Trusted

Systems. CSC-TG-030, Rainbow Series (Light Pink Book), 1993.
[Hoe66] P. G. Hoel. Introduction to Mathematical Statistics. John Wiley & Sons,

Inc, third edition, 1966.
[Hu91] W.-M. Hu. Reducing Timing Channels with Fuzzy Time. In IEEE Sym-

posium on Research in Security and Privacy, pages 8–20, 1991.
[Hus78] J. C. Huskamp. Covert Communication Channels in Timesharing Systems.

Technical report UCB-CS-78-02, University of California, 1978.
[Kem83] R. A. Kemmerer. Shared resource matrix methodology: An approach to

identifying storage and timing channels. ACM Transactions on Computer
Systems, 1(3):256–277, 1983.

[KMO12] B. Köpf, L. Mauborgne, and M. Ochoa. Automatic Quantification of Cache
Side-Channels. In 24th International Conference on Computer Aided Ver-
ification, LNCS 7358, pages 564–580. Springer, 2012.

[KW91] P. A. Karger and J. C. Wray. Storage Channels in Disk Arm Optimization.
In IEEE Symposium on Security and Privacy, pages 52–63, 1991.

[Lam73] B. W. Lampson. A Note on the Confinement Problem. Communications
of the ACM, 16(10):613–615, 1973.

[McH95] J. McHugh. Chapter 8: Covert channel analysis from handbook for the
computer security certification of trusted systems. Technical Memorandum
5540:080A, Naval Research Laboratory, 1995.

[MS07] H. Mantel and H. Sudbrock. Comparing Countermeasures against
Interrupt-Related Covert Channels in an Information-Theoretic Frame-
work. In 20th IEEE Computer Security Foundations Symposium, pages
326–340, 2007.

[MS09] H. Mantel and H. Sudbrock. Information-Theoretic Modeling and Analysis
of Interrupt-Related Covert Channels. In Workshop on Formal Aspects in
Security and Trust, Springer, LNCS 5491, pages 67–81, 2009.

[MSS+08] H. G. Molter, H. Shao, H. Sudbrock, S. A. Huss, and H. Mantel. Designing
a Coprocessor for Interrupt Handling on an FPGA. Technical report, TUD-
CS-2008-1103 (TU Darmstadt), 2008.

[Sha48] C. E. Shannon. A Mathematical Theory of Communication. The Bell
System Technical Journal, 27:379–423, 623–656, 1948.

[Tro98] J. Trostle. Timing Attacks Against Trusted Path. In IEEE Symposium on
Security and Privacy, pages 125–135, 1998.

[Wik13] Wikipedia. G-test — Wikipedia, the free encyclopedia. http://en.
wikipedia.org/wiki/G-test, 2013. [Online; accessed 21-June-2013].

http://en.wikipedia.org/wiki/G-test
http://en.wikipedia.org/wiki/G-test

12

A Proofs

The following proof is an adapted version of so far unpublished work by one of
the authors [Gay08].

Proof (Lemma 1). Let p(X) be a probability distribution over x ∈ I. Let π :=
p(X=1). Then p(X=0) = 1− π. The definition of mutual information gives

I(X;Y) =
∑
x,y

p(x, y) · log
p(x, y)

p(x)p(y)
=
∑
x,y

p(y|x)p(x) · log
p(y|x)

p(y)

= (1− π)
∑
y

p(y|X=0) log
p(y|X=0)

p(y)
+ π

∑
y

p(y|X=1) log
p(y|X=1)

p(y)

p(Y=0|X=0)=1
= −(1− π) log p(Y=0) + π

∑
y

p(y|X=1) log
p(y|X=1)

p(y)
.

The second sum can now be split into the cases y = 0 and 0 < y ≤ N . Let
` := p(Y=0|X=1) and ¯̀ := 1− `. Then

I(X;Y) = −(1− π) log p(Y=0) + π` log
`

p(Y=0)
+ π

∑
0<y≤N

p(y|X=1) log
p(y|X=1)

p(y)

= −(1− π + π`) log p(Y=0) + π` log `+ π
∑

0<y≤N

p(y|X=1) log
p(y|X=1)

p(y)
.

From p(y) =
∑
x p(y|x)p(x), according to the law of total probability, we obtain

p(Y=0) = 1− π(1− `) = 1− π ¯̀ and, for y > 0, p(y) = πp(y|X=1). This gives

I(X;Y) = −(1− π ¯̀) log(1− π ¯̀) + π` log `− π log π
∑

0<y≤N

p(y|X=1)

= −(1− π ¯̀) log(1− π ¯̀) + π` log `− ¯̀π log π. (1)
The capacity Cap(I,O, P) is defined as the maximum of the mutual information
I(X;Y) between input and output, with respect to the input distribution. This
input distribution is represented by the single parameter π = p(X=1). The
maximum2 can be computed by solving d

dπ I(X;Y) = 0 for π. For this, we first
differentiate f(π) · log f(π) wrt. π for any differentiable function f :

d

dπ
f(π) log2 f(π) = f ′(π) log2 f(π) + f(π) · f ′(π)

f(π) ln(2)

= f ′(π) · (log2 f(π) + log2(e)) = f ′(π) · log2(ef(π)).

By utilizing the above result, we obtain
d

dπ
I(X;Y) = ¯̀log(e(1− π ¯̀)) + ` log `− ¯̀log(eπ)

= ` log `+ ¯̀log
(
1/π − ¯̀

) !
= 0.

From λ ∈ [0, 1), we know ` < 1. This allows to solve the previous equation for
π, resulting in π =

(
¯̀+ `−`/

¯̀)−1. For this value of π, we get the capacity by
computing the mutual information as in (1). Hence the lemma holds. ut

2 The extremal value is a maximum since I(X;Y) is concave [CT06, Theorem 2.7.4].

	An Empirical Bandwidth Analysis of Interrupt-Related Covert Channels

