
Quantitative Evaluation of Enforcement Strategies

Vincenzo Ciancia1, Ilaria Matteucci1, and Charles Morisset2

1 CNR-IIT Via Moruzzi 1, 56124, Pisa, Italy firstname.lastname@iit.cnr.it
2 School of Computing Science Newcastle University NE17RU, UK

charles.morisset@ncl.ac.uk

Abstract. A security enforcement mechanism runs in parallel with a system to
check and modify its run-time behaviour, in order to guarantee the satisfaction
of a security policy. For a given policy, several enforcement strategies are pos-
sible, usually reflecting several trade-offs one has to make to satisfy the policy.
We provide a formal framework for the quantification of enforcement strategies,
by composing the enforcement mechanism with a process monitoring a user-
defined quantity. This is done by extending the notion of controller process, that
mimics the well-known edit automata, with weights on transitions, valued in a
C-semiring. We demonstrate with some examples how we leverage the flexibil-
ity and generality of C-semirings to compare controllers according to multiple
dimensions, such as security and/or cost, and we propose different evaluation
strategies.

Keywords: Process Algebra, Enforcement Mechanism, Quantity Monitoring, For-
mal Analysis.

1 Introduction

Security is often regarded as a binary concept. Behaviour is either good or bad. Good
behaviour is either enforced or not. Still, in many cases we do not deal with just two
security values. Reality is much more complex and may force us to consider several
quantitative aspects that play a role in the design and evaluation of enforcement strate-
gies. For example, a controller can have a higher financial impact than another one in
enforcing a specific security policy, or the benefits, in a certain domain, of enforcing a
specific policy, may fail to counter-balance the disadvantages in a different domain.

Proper analysis of the situation paves the way to complex decisions in the control-
ling phase that take several parameters into account. In this work, we deal with such
quantitative aspects of security, and especially of the monitoring and enforcement of
security policies.

There is a significant bulk of work devoted to the study of enforcement strategies.
Several formal models have been defined during the last decade. We recall as foremost
examples security automata [29] that are only capable of preventing bad executions, and
edit automata [2], capable of inserting, suppressing, and editing their output sequences.
Other approaches make use of concurrent languages (such as process algebras), that
model both the target and the control system in the same formalism [19,20,15].

One can consider several quantitative dimensions, such as cost, time, risk, or even
trust. All these different domains demand for a parametric approach when modelling

targets and controllers. We address this aspect by using C-semirings, that are widely
adopted as a domain for optimization problems [4]. C-semirings account for multi-
dimensional valuations, and establish a partial order on values. We chose a variant of the
quantitative process algebra GPA [7] as the language to express controllers and targets.
This process algebra provides CSP-style synchronization, and actions weighted over a
semiring. After providing the necessary background about C-semirings and GPA, in
Section 2 we define the quantitative evaluation of processes and their traces. The goal
of the paper is to provide a quantitative evaluation of enforcement processes to com-
pare different strategies according to several measures. We make a distinction between
monitors and controllers: monitors (Section 3) can be used to associate quantities to
an existing system without changing its behaviour; controllers (Section 4) are able to
modify the behaviour of a target by using control actions for suppressing or inserting
possible incorrect actions. Our framework is conservative, in the sense that a classi-
cal boolean security policy can be monitored using the boolean C-semiring. Finally, in
Section 5 we study the formal grounds of quantitative evaluation and comparisons of
controllers. This permits one to compare different strategies in terms of their evaluations
with respect to different measures, e.g., security, cost, trust, energy, and so on. Multi-
dimensional criteria are indeed possible in the general framework of C-semirings.

To sum up, the main contribution of this paper is a parametric framework within
which a security designer can model a system, some quantities to monitor and evaluate
different controllers with respect to these quantities, thus permitting her to reason about
the trade-off among different measures. The use of semirings allows one to combine
different domains, while the quantitative process algebra that we use enables one to
reason in a compositional manner.

2 Quantitative Processes

A quantitative process is a process where each transition is labelled with some quantity.
We first introduce the notion of C-semiring, and then present an algebra for quantitative
processes.

Definition 1. AC-semiring is a tuple K = (K,
∑
, ∗,0,1) whereK is a set, with 0 and

1 elements of K.
∑

: P(K)→ K with
∑
{a} = a,

∑
∅ = 0,

∑
K = 1,

∑
(
⋃
Ki) =∑

{
∑
Ki} for Ki ⊆ K, i ≥ 0 and ∗ : K ×K → K is commutative, associative and

distributive property over
∑

; 1 is its unit element, and 0 is its absorbing element.

We write k1 + k2 for
∑
{k1, k2}, making + a commutative, associative and idempo-

tent operator. Many examples of C-semirings can be found in the literature (e.g., [4]),
such as: the Boolean C-semiring KB = 〈{true, false},∨,∧, false, true〉, for logical
values and operations; the Cost C-semiring KC = 〈R+

0 ,min,+,+∞, 0〉; the Trust
C-semiring KT = 〈[0, 1],max,min, 0, 1〉. We also introduce a special dummy C-
semiring KD = 〈{0},

∑
, ∗, 0, 0), where

∑
∅ =

∑
{0} = 0 and ∗ is the traditional

arithmetic multiplication. Since any value in this C-semiring equals 0, it is easy to see
that it satisfies all required properties. We use this C-semiring when considering com-
position of C-semirings. We write K1 ≡ K2 when K1 and K2 are isomorphic, and the
results described hereafter are given modulo isomorphism between semirings.

Every C-semiring is endowed with a partial order v, such that k1 v k2 if, and only
if k1+ k2 = k2. This partial order intuitively indicates a notion of preference, such that
k1 v k2 can be read as k2 is “better” than k1.

Complex C-semirings can be obtained by composition. For instance, the cartesian
product of C-semirings is a C-semiring, having elements in the cartesian product of
the two sets of values, and operations defined in a point-wise way. Further compo-
sitions techniques exist, such as the lexicographic C-semiring [27], the expectation
semiring [17], etc.

Definition 2. A composition operator over C-semirings is a function � satisfying, for
any C-semiring K, KD �K ≡ K.

In most cases, the support set of K1 � K2 is K1 ×K2, the additive and multiplicative
operators can however change from one composition to another. Given two values k1 ∈
K1 and k2 ∈ K2 we write k1�k2 for the corresponding composite value in the support
set of K1 �K2.

Example 1. Given K1 = 〈K1,
∑

1, ∗1,01,11〉 and K2 = 〈K2,
∑

2, ∗2,02,12〉, the lex-
icographic composition operator�L is defined such that K1�LK2 = 〈K3,

∑
3, ∗3,03,13〉,

where K3 = K1×K2, 03 = (01,02), 13 = (11,12), and for any k1, k′1 ∈ K1 and any
k2, k

′
2 ∈ K2:

(k1, k2) +3 (k
′
1, k
′
2) =

{
(k1, k2) if (k′1 v1 k1 and k1 6= k′1) or (k1 = k′1 and k′2 v2 k2)
(k′1, k

′
2) otherwise.

(k1, k2) ∗3 (k′1, k′2) = (k1 ∗1 k′1, k2 ∗2 k′2)

Along this paper we describe the behaviour of controllers and targets in terms of process
algebras and semirings. In particular we use the Generalized Process Algebra (GPA),
introduced in [7], in order to specify quantitative aspects of process transitions.

Definition 3. The set L of agents, or processes, in GPA over a set of finite transition
labels Act and a C-semiring K is defined by the grammar

A ::= 0 | (a, k).A | A+A | A‖S A | X

where a ∈ Act, k ∈ K, S ⊆ Act, and X belongs to a countable set of process
variables. We write GPA[K] for the set of GPA processes labelled with weights in K.

Our definition of process diverges from the original formulation of GPA in two main
points. Firstly, we use C-semirings instead of semirings, since we need to consider in-
finite sums, quantified over the (infinite) set of traces of a process. In semirings, the
additive operation is binary, so they are defined (inductively) only on finite sets. Sec-
ondly, we allow for transitions with weight 0. We are indeed interested in distinguishing
between processes that do not perform a given action and processes that perform it with
weight 0. For instance, if the weight measures the satisfaction of a security policy, we
want to consider processes that actually violate it.

The definition of the syntax adopts typical constructs of process algebras [24,28].
We assume a defining equation X , A for each variable appearing in a term, and we

Table 1. Operational semantics for GPA [7].

(a, k).A
a,k→ A

A
a,k→ A1 A′

a,l→ A′1

A‖S A′
a,k∗l→ A1‖S A′1

a ∈ S A
a,k→ A1

X
a,k→ A1

X , A

A
a,k→ A1

A‖S A′
a,k→ A1‖S A

a 6∈ S Aj
a,k→ A1∑

i∈I
Ai

a,kΣ→ A1

j ∈ I A′
a,k→ A′1

A‖S A′
a,k→ A‖S A′1

a 6∈ S

where kΣ =
∑
i∈I(Ai

a→ A1)

assume that processes have guarded recursion, that is, all the variables in a process are
directly under some prefix. We omit the hiding operator from GPA as we will introduce
more fine-grained control operators in Section 4. The intuitive meaning of the operators
is as follows: 0 describes the termination of a process; (a, k).A performs the action a
with a certain weight k and then behaves as A; A+A′ non-deterministically behaves as
either A or A′; A‖S A′ describes the process in which A and A′ proceed concurrently
and independently on all actions which are not in S. All the action in S are performed if
and only if both the process perform the same action in S at the same time. The formal
semantics of operators (Table 1) is expressed in terms of a multiple labelled transition
system (MLTS for short). Similarly to weighted automata [13], MLTSs are labelled
transition systems with weights on labels, that we define below. Notice that there is no
need to maintain a distinction between GPA processes and states of the corresponding
MLTS, as they coincide (which is typical in process calculi).

Definition 4. A multi labelled transition system (MLTS) is a tuple3 (S,Act,K, δ), where
S is the state space which is finite or countably infinite, Act is a finite set of transition la-
bels, K is a semiring used for the definition of transition weights, and δ : S×Act×S ⇀
K is the partial transition function.

Remark 1. The definition of an MLTS syntactically resembles that of a weighted au-
tomaton [13]. Semantically speaking, weighted automata denote (weighted) languages,
that is, properties, whereas MLTSs are models, similarly to the case of classical au-
tomata and labelled transition systems.

In run-time enforcement, one should not tell processes apart by their internal choices,
but rather by their execution traces. In this light, we define quantitative evaluation of
predicates over agents. In the following, let A be an agent and consider the correspond-
ing MLTS with set of states S.

Definition 5. Given states s1, s2 ∈ S, we say that t ∈ (Act×K)∗ is a path from s1 to
s2, and write s1

t⇒ s2, if either t is empty, and s1 = s2, or t = (a, k).t′, and there is

3 In [7], an initialization function is also taken into account, assigning an initial quantitative
valuation to each state. In the current paper we do not need it, thus we simplify the presentation.

s′ ∈ S such that s1
(a,k)→ s′, and t′ is a path from s′ to s2. We let T (s) be the set of paths

from s to some other state, and we write T (A) to denote the set of paths of a process A.

Definition 6. Given a path t = (a1, k1) · · · (an, kn), the label of t is given by l(t) =
a1 · · · an ∈ Act∗, and its run weight by |t| = k1 ∗ . . . ∗ kn ∈ K.

The valuation of a process intuitively corresponds to the best possible quantity of this
process.

Definition 7. Given a process A, the valuation of A s is given by JAK, such that

JAK =
∑

{t∈T (A)}

|t|

Finally, without any loss of generality, we consider any unlabelled process as la-
belled with the dummy C-semiring KD.

3 Quantitative monitor operators

Definition 7 assumes that the considered process is already labelled with some quanti-
ties. However, a system, hereafter named target, does not always come with the quan-
tities we are interested in evaluating, and might even be not labelled at all. Hence,
in the most general case, the security designer must provide a labelling function λ :
GPA[K1] → GPA[K2], such that given any process A labelled in K1, λ(A) represents
the process A labelled with a quantity in K2. A simple example is the function λv ,
which assign any transition with the value v ∈ K2, thus erasing any previous quantity.

In practice, the responsibility of measuring a particular aspect is often delegated
to a monitor, which probes the system and indicates the weight of each operation. In
terms of security, a monitor is usually passive, i.e., it does not effectively modify the
behaviour of the considered target. This means that it does not prevent violation of
a security policy. On the other hand, a controller is able to modify the behaviour of
a target in order to guarantee security requirements. A security monitor and a security
controller are often merged into a single entity, responsible both for deciding whether an
action would violate the policy and what corrective action should be taken if necessary.
We propose here to make an explicit distinction between these two processes and to
extend the monitoring to measures other than security. In this section we investigate
quantitative monitors. Controllers are detailed in Section 4.

Intuitively, a monitor measures a quantity not already present in the monitored tar-
get. Since the target might be already equipped with some quantities, coming for in-
stance from another monitor, we need to merge the quantities from the monitor with
those of the target. As said in Section 2, there is not a single way to compose C-
semirings together, and therefore, the merge requires a composition operator �.

Definition 8. Given a process A labelled with K, a process A′ labelled with L and a
composition operator �, we write A�A′ for the merged process, semantically defined
as:

A
a,k→ A1 A′

a,l→ A′1

A�A′ a,k�l→ A1 �A′1

A merged process can only move on when both of its components can move on with
the same action.

We are now able to define a monitor, which is a process that can be composed with
a target without affecting its behaviour.

Definition 9. Given a composition operator � and a process A, a process M is a
monitor for A if and only if {l(t) | t ∈ T (A�M)} = {l(t) | t ∈ T (A)).

Given any process A labelled with K1, any monitor M for A labelled with K2 and
any composition operator �, we can define the labelling function λ : GPA[K1] →
GPA[K1 �K2] as λ(A) = A � M . It is worth observing that given any unlabelled
process A, i.e., a process in GPA[KD], and a monitor M labelled in K2, we have
A � M ∈ GPA[K2], since from Definition 2, we have KD � K2 ≡ K2. In other
words, unlabelled systems can be monitored in an equivalent way than systems already
labelled.

Example 2. Let us consider the simple case of a process A with no existing weight and
with an alphabet Σ = {a, b}. We want to define an energy monitor using the semiring
KC , such that the action a consumes 3 units, and the action b consumes 2n units, where
n is the number of times b has been performed (i.e., b has an increasing energy cost).
Hence, for n > 0, we define the monitor:

Mn = (a, 3).Mn + (b, 2n).Mn+1

For instance, the process A = a.b.b.a.b can be monitored with4

A�M1 = (a, 3).(b, 2).(b, 4).(a, 3).(b, 6)

The valuation of the monitored process corresponds to the total energy consumed, i.e.,
JA�M1K = 18. Similarly, the monitored process of B = a+ b is B �M1 = (a, 3) +
(b, 2), and its valuation JB �M1K = 2, since the valuation returns the best possible
quantity. Finer-grained approaches can be used to get the valuation of a process, as
discussed in Section 7.

Example 3. Let us now consider a security policyP defined as a predicate on traces. For
instance, in the previous example, consider a policy stating that the action a cannot be
performed before b. Using the boolean semiring KB , we define the following monitor:

MP = (b, true).M ′P + (a, false).M ′′P

M ′P = (b, true).M ′P + (a, true).M ′P

M ′′P = (b, false).M ′′P + (a, false).M ′′P

Roughly speaking, MP observes the first action: if the target executes b, then any
following action is secure, otherwise any following action is not secure. In order to
monitor both security and energy, we consider the lexicographic composition �L de-
fined in Example 1. In other words, a secure trace is always better than a non-secure
one, and two traces equally (non)secure are compared based on their energy. Hence,
given the process A = a + b.a, its monitored version is given by MP � (A �M1) =
(a, false, 3) + (b, true, 2).(a, true, 3), and we have JMP �L (A�M1)K = (true, 5).

4 In the following, the terminating process 0 is omitted when obvious from context.

Bauer et al. established in [2] than it is possible to define an enforcement mechanism for
any safety property, i.e., any property such that an incorrect trace cannot be extended
into a correct one. Therefore, we are able to state the following proposition.

Proposition 1 Given any safety property P and any process A, there exists a monitor
MP such that for any trace t ∈ T (A�MP), |t| = true if and only if P (l(t)).

Proof. (sketch) From [2,20], we know that if P is a safety property, there exists a pro-
cess that works as a truncation automaton5 (Q, δ, q0) for enforcing P . We therefore
define the monitor over Q ∪ {q?}, such that, for any state q ∈ Q and for any action

a, q
a,true→ q′ if, and only if q′ = δ(q, a), q

a,false→ q? if δ(q, a) is not defined, and

q?
a,false→ q?.

Clearly, finer-grained approaches can be used to monitor a security policy. For instance,
in the previous example, we could consider that executing a single a before a b is some-
how “better” than executing a many times. In that case, we could use the cost semiring
KC , and define the monitor as:

MP = (b, 0).M ′P + (a, 1).M ′′P M ′P = (b, 0).MP + (a, 0).M ′P

M ′′P = (b, 0).M ′P + (a, 1).M ′′P

Note that a monitor is only one possible way to build a labelling function λ. Although
monitors are expressive enough for the examples we consider in this paper, more com-
plex labelling functions may also be of interest.

Remark 2. By construction, the valuation of the empty process is equal to 0, since the
sum of the empty set is equal to 0. For instance, when considering the quantity for
a security policy, the valuation of the empty process is false. Although such a value
makes sense for liveness properties (where an action must happen in order for the prop-
erty to hold), it might be counter-intuitive for properties that hold on the empty trace.
In order to avoid such cases, given any process A, it is always possible to consider the
processAι, such thatAι

τ,ι→ A, where ι represents an initialization value. This approach
is intuitively similar to that of Buchholz and Kemper [7], who explicitly introduce an
initialization function.

4 Quantitative control operators

The role of the monitor is to detect a policy violation, and not to prevent a target system,
hereafter denoted by F , from doing so. For this reason it can be used, for instance, for
directly evaluating a security policy P as a value on each transition of a target process
(see Example 3).

A controller E, just like a monitor M , follows target actions step by step. The
difference is that M observes target actions, labelling them with true when they obey
to the policy P or false when they attempt to violate P . On the contrary, the controller
can decide not only to accept but also to change target traces. The resulting process is
the controlled process E . F , following the semantics given in Table 2.

5 Due to the lack of space, we do not recall the definition of the truncation automaton here, and
we refer to [2] for a complete definition.

Table 2. MLTS rules for quantitative control operators.

E
a,k→ E′ F

a,k′→ F ′

E . F
a,k∗k′→ E′ . F ′

(ACCEPT) E
�a,k→ E′ F

a,k′→ F ′

E . F
τ,k∗k′→ E′ . F ′

(SUP) E
�a.b,k→ E′ F

a,k′→ F ′

E . F
b,k→ E′ . F

(INS)

Intuitively speaking, each rule corresponds to a different controlling behaviour. The
alphabets of E, F , and of the resulting process E . F are different, as E may perform
control actions that regulate the actions of the target F , and moreover the resulting pro-
cessE.F may perform internal actions, denoted by τ , as a consequence of suppression.
From now on, we will let Act be the alphabet of (the GPA describing) F . The alphabet
of E consists of symbols of the form a, �a.b, �a for a, b ∈ Act, denoting respectively
the actions of acceptance, suppression, and insertion; the alphabet ofE.F isAct∪{τ}.

The acceptance rule (ACCEPT) constrains the controller and the target to perform
the same action, in order for it to be observed in the resulting behaviour; the observed
weight is the product of those of the controller and the target. Given two processesA and
B, the semantics of truncation is equivalent to that of CSP-style parallel composition of
A and B, where synchronisation is forced over all actions of the two processes.

The suppression rule (SUP) allows the controller to hide actions of the target. The
target wants to perform the action, but the action is not performed by the controlled
entity and the observed result is a τ action, with the weight calculate as the product of
the suppressing and the target action.

Finally, the insertion rule (INS) describes the capability of correcting some bad be-
haviour of the target, by inserting another action in its execution trace. The weight of
insertion is only the weight provided by the controller; this accounts for the fact that the
target does not perform any action, but rather stays in its current state, as in [2].

Example 4. Consider the policy of Example 3, where any trace should start with at
least one action b. Omitting the weights for now, we can define two controllers: E2

suppresses any action a as long as an action b has not been performed; E3 inserts an
action b if a is submitted first. Both controllers use an auxiliary controller E1, that
accepts any action:

E1 = a.E1 + b.E1 E2 = �a.E2 + b.E1 E3 = �a.b.E1 + b.E1

Given the sequential target F = a.b, we have

E2 . a.b
τ→ E2 . b

b→ E1 . 0 E3 . a.b
b→ E1 . a.b

a→ E1 . b
b→ 0

The process E3 .F has one more transition than E2 .F , because the insertion does not
change F .

For the sake of simplicity, we do not consider here blocking controllers, which prevent
the target to perform any action. A classical example of blocking controller is the trun-
cating controller, forbidding the target to perform any action. In the previous example, a

truncating controller could be defined by E4 = b.E1, meaning that the controlled target
E3 . a.b would be simply blocked. The focus of this paper is indeed to quantify the
behaviour of a controlled process, which requires that the controlling strategy has an
observable effect. In practice, truncating can be achieved by a continuous suppression
of any action of the target, for instance, omitting again any weight, the previous con-
troller E4 has the same observable effect (i.e., ignoring τ actions) than the following
controller E5:

E5 = �a.E6 + b.E1 E6 = �a.E6 +�b.E6

Formally, in the rest of the paper, we only consider controllers obeying the following
definition.

Definition 10. Given any target F , a controller E is said to be non-blocking, if and
only if

∃a ∈ Act F a→ F ′ ⇒ ∃b ∈ Act ∪ {τ} E . F
b→ E′ . F ′′

where E′ is also a non-blocking controller. Note that we do not impose F ′ = F ′′, since
E might not let F perform its intended action, as it is the case with the insertion rule.

4.1 Soundness and Transparency

Classical properties of a controller are soundness and transparency: intuitively, a con-
troller is sound if, and only if, any output trace is correct, i.e., it has weight true in our
framework, and transparent if, and only if, any correct trace of the target is not modified
by the controller.

Definition 11. Given a property P , a process A ∈ GPA[K] satisfies P if, and only if:

∀t ∈ T (A�cMP) |t| = (v, true), for some v ∈ K

A controller E is sound for P if, and only if, given any target F , E . F satisfies P . In
addition, E is said to be transparent for P if, and only if, for any target F satisfying P ,
we have T (F) = T (E . F).

The previous controllers E2, E3 and E5 are sound and transparent, while E1 is
transparent, but not sound, and E6 is sound, but not transparent. It is worth observing
that given a property P , ifE is sound for P , then, assuming thatE and F are unlabelled,
we trivially have J(E . F) �MP K = true, but the reverse does not necessarily hold.
Indeed, the valuation of a controlled process returns the best possible evaluation, so as
long as one trace in (E .F)�MP has weight true, the whole process also evaluates to
true. In other words, in the context of security, the valuation of a process can be seen
as: if J(E . F) �MP K = false, then there is no possibility for the controlled process
to satisfy P .

4.2 Controller Quantities

In the previous example, we monitor the security policy on the controlled target, rather
than controlling the monitored target. This latter approach would indeed maintain the
weight of some of the bad actions, and so the value of each trace would not match the
satisfaction of the policy. Furthermore, in order to be consistent with the semantical
rules, if the controlled target is labelled with some weight, the controller needs to be
labelled with compatible weights. In other words, given a target monitored by MP , the
controller must be labelled in KB . For instance, λtrue(E) associates each transition of
E with true, and since it is the neutral value of the multiplication, the weight of the
target is that of the controlled target.

Clearly, these approaches are not exclusive, and it might be valuable to monitor both
how many times the target tried to violate the policy and whether the controlled target
violates the policy. Hence, using the simple cartesian composition �C , where each
operation is defined in a point-wise way, given an unlabelled target F and controller
E and a security monitor MP , a trace t belonging to the process (λtrue(E) . (F �
MP)) �C MP has a weight (b1, b2), where b1 indicates whether the target tried to
violate the policy, and b2 whether this trace actually satisfies the policy.

In some cases, it might be desirable to monitor both the controller and the target
independently. For instance, the controlling actions can be associated with a notion of
cost [11].

Example 5. The monitor Mn defined in Example 2 can be extended to also monitor
controlling actions, in such a way that accepting an action costs 0, suppressing an action
costs 1 and inserting an action costs 2:

Mc = (x, 0).Mc + (�y, 1).Mc + (�w.v, 2).Mc

for x, y, w, v ∈ Act. The global energy consumed both by a controller E and a target F
can be obtained with (E �Mc) . (F �M1). For instance, given the process A = a.b.a
and the controller E2 of Example 4, we have:

(E2 �Mc) . (a.b.a�M1)
τ,1+3→ (E2 �Mc) . (b.a�M1)

b,0+2→
(E1 �Mc) . (a�M2)

a,0+3→ (E1 �Mc) . (0�M2)

which raises a total energy consumed of 9. In order to measure only the energy con-
sumed by the controlled target, taking also into account controlling actions, one should
instead consider the process ((E �Mc) . (λ0(F)))‖{a,b}M1.

Note we can use directly the parallel composition with M1, since the controlled
target is already labelled with energy quantities. In this case, for A = a.b.a and E2, the
total energy consumed is only 6, since the energy of the first action a is not taken into
account.

4.3 Evaluation Strategy

In order to evaluate a given controller against a given target, different labelling functions
can be used, and as shown above, the actual order can have an impact on the global

valuation. For the sake of clarity, we introduce the notion of matching operator 1,
which has the following form:

E 1 F = λT (λE(E) . λF (F))

where λE labels the controller, λF labels the target and λT labels the controlled target.

Example 6. The different evaluation strategies defined here can be summarised as:

E 1D F = λtrue(E) . (F �MP) E 1P F = (E . F)�MP

E 1C F = (E �Mc) . (F �M1) E 1G F =MP �L (E 1C F)

where 1D detects policy violations, even if they are corrected by the controller, 1P
monitors the satisfaction of the policy by the controlled target, 1C monitors the energy
of both the controller and the target, and 1G defines a lexicographic measure of the cost
and the satisfaction of the policy.

5 Ordering controller strategies

In this section, we present a way to compare different controller strategies. Firstly, since
we can always get the valuation of two controllers for a given target, we can easily
compare them accordingly. We then generalize this ordering to any target.

Hence, we provide a classification for any considered semiring. This means that we
classify both sound and not sound controllers. This leaves to the user the choice of the
measure that has to be used for classifying controller strategies.

Definition 12. Given a target F and a matching operator 1, a controller E2 is better
than a controller E1 with respect to F , and in this case, we write E1 v1,F E2, if and
only if JE1 1 F K v JE2 1 F K.

This definition does not directly depend on the semiring used to quantify the controlled
target, and it is therefore possible to use the same definition to say that a controller is
better than another one with respect to a security monitor, a cost monitor or any other
measure.

Since it might be that a controller is better than another one for a specific target, and
that the converse holds for some other target, we introduce a stricter ordering, where
the comparison is performed over all possible targets.

Definition 13. Given two controllers E1 and E2 and a matching operator 1, we say
that E2 is always better than E1, and in this case we write E1 v1 E2 if and only if
E1 v1,F E2, for any target F . In addition, if E1 v1 E2 and there exists at least one
target F such that JE1 1 F K 6= JE2 1 F K, we say that E2 is strictly better than E1,
and write E1 <1 E2.

Since each individual trace can be represented as a target, it implies that the valuation of
E1 should be lower for every possible trace. Hence, this definition identifies the cases
where a controller strategy is always better than another one.

Example 7. Let us extend the example described in Section 3, such that we have now
three actions {a, b, c}, and a policy P stating that any trace should start with at least
one action b. Now, consider the four following controllers:

E1 = a.E1 + b.E1 + c.E1 E2 = �a.E2 + b.E1 + c.E2

E3 = �a.E3 + b.E1 +�c.E3 E4 = �a.b.E1 + b.E1 +�c.b.E1

Intuitively, E1 accepts all actions, E2 suppresses all initial actions a, but accepts action
c, E3 suppresses both actions a and c, and E4 inserts a b before any initial a or c.
As soon as an action b is performed, all processes are equivalent to E1, and accept all
actions.

Since E3 and E4 are sound, we have JE3 1P F K = JE4 1P F K = true, for any
target F . In addition, given any target F such that JE2 1P F K = false, we also have
JE1 1P F K = false. Since there are also targets F such that JE2 1P F K = true and
JE1 1P F K = false, we have

E1 <1P E2 <1P E3 ≡1P E4

where ≡1 is the equivalence relation induced by the partial order v1 . In other words,
E3 and E4 are maximal, and E1 is strictly worse than E2.

However, it is worth observing that E1 is not the worst possible controller. In-
deed, E1 leaves unchanged the correct traces of F , meaning that there exists some
targets F such that JE1 1P F K = true. The worst controller always outputs incor-
rect traces, even when the target is correct. For instance, we can define the controller
E0 = �b.a.E1 + a.E0 + c.E0, which satisfies JE0 1P F K = false, for any target F ,
and therefore E0 <1P E1.

In some cases, controllers can be incomparable. In the previous example, the controller
that only suppresses bad actions a is incomparable with the one that only suppresses
bad actions c. Furthermore, the choice of the controlling operators can have an impact
on the overall evaluation.

We believe this example to be representative of the contribution of our framework.
Indeed, a traditional, qualitative analysis would label E3 and E4 as sound on the one
hand, and E0, E1 and E2 as equally incorrect on the other hand. The quantitative anal-
ysis provides us instead with an ordering over controllers. Of course, it is always de-
sirable to use a sound controller, but when such an option is not available, it is useful
to know which one is the next best. For instance, if one cannot implement the control-
ling strategy E3 because the action c is uncontrollable [1], i.e., cannot be suppressed or
protected, then a security designer may prefer to choose E2 over E1, and certainly over
E0.

The controllers E3 and E4 are equivalent with respect to 1P , since they are both
sound, and, if policy satisfaction is the only criterion, a security designer might choose
either. However, other dimensions can easily be included within our framework, with
the intuition that the more accurate is the quantification of the controlled system, the
more informed is the security designer to choose a particular controller.

Example 8. In order to compare the previous controllers E3 and E4, let us consider the
matching operator 1G with the extended cost monitor Mc of Example 5:

(a, 0).Mc+(b, 0).Mc+(c, 0).Mc+(�a, 1).Mc+(�c, 1).Mc+(�a.b, 2).Mc+(�c.b, 2).Mc

First, it is worth observing that since we use the lexicographic ordering, the relations
E0 <1G E1 <1G E2 <1G E3 and E0 <1G E1 <1G E2 <1G E4 still hold. However,
E3 and E4 are no longer equivalent, and as a matter of fact, they become incomparable.
Indeed, consider the target F1 = a: we have JE3 1G F1K = (true, 1) and JE4 1G
F1K = (true, 2), meaning that E4 <1G,F1 E3. On the other hand, given the target
F2 = a.a.a, we have JE3 1G F1K = (true, 3) and JE4 1G F1K = (true, 2), meaning
that E3 <1G,F2

E4, and therefore that E3 and E4 are incomparable.

The previous example illustrates that, in general, there might not be a strictly best strat-
egy. In some cases, it might be possible to define an optimal strategy, which is best in
average. For instance, in the previous example, if each trace can be associated with a
probability, then the expected cost of each controller can be computed, thus providing a
unique best controller.

6 Related Work

The problem of finding an optimal control strategy is considered by Easwaran et al.
in [14] in the context of software monitoring, where the system is represented as a Di-
rected Acyclic Graph, and where rewards and penalties with correcting actions are taken
into account, thus using dynamic programming to find the optimal solution. Similarly,
an encoding of access control mechanisms using Markov Decision Process is proposed
in [23], where the optimal policy can be derived by solving the corresponding optimisa-
tion problem. Markov chains are used in PRISM [16] in order to evaluate and validate
systems in a quantitative and probabilistic way. From a different perspective, Bielova
and Massacci propose in [3] a notion of distance among traces, thus expressing that if
a trace is not secure, it should be edited to a secure trace close to the non-secure one,
thus characterizing enforcement strategies by the distance from the original trace they
create. In a recent approach [11], a notion of cost similar to the one in this paper is used
to compare correct enforcement mechanisms (defined as state machines) with different
strategies. In this work, we focus on using a generalised notion of weight expressed as
an element of a semiring, following some intuitive leads given in [22] in order to move
from qualitative to quantitative enforcement. Semirings have been used by Bistarelli
et al. in the context of access control [6] and trust systems [5]. Here we use them in
the context of enforcement mechanism defined using a process algebra, following the
approach by Buchholz and Kemper [7]. We also consider in this paper the possibility
for a controller not to be correct, i.e., to allow for some violations of the policy. Such
a possibility is quantified over traces in [12] for non-safety policy, where a controller
cannot be both correct and fully transparent. Caravagna et al. consider in [8] the notion
of lazy controllers, which only control the security of a system at some points in time,
and based on a probabilistic modelling of the system, quantify the expected risk. Basin
et al. consider in [1] the case where some actions are uncontrollable (i.e., cannot be
stopped), and define what policies can then be enforced, by modeling a controller as a

Deterministic Turing Machine. In the context of access control, Molloy et al. use a ma-
chine learning approach to predict the decision for a given request [26], and balance the
risk of error against the cost of contacting the real mechanism to get the actual decision.

Non-binary measures of security have also been considered for access control sys-
tems, for instance by Cheng et al. [9], who consider that the level of security should
correspond to a fuzzy domain rather than a strict separation between what is secure and
what is not. Similarly, Zhang et al. define with the BARAC model [30] a notion of bene-
fit for each access, with the underlying idea that allowing an access comes with a benefit
for the system (while we take in this paper, a somewhat dual approach, by considering
that denying an access might come with a cost for the system). The “value” of an access
or an action can be for instance calculated using market-based techniques [25].

7 Discussion - Future work

Our framework allows a security designer to consider a security policy as yet another
quantity to measure. Instead of a binary classification between sound and unsound con-
trollers, we provide a finer-grained ordering, distinguishing between different degrees
of soundness.

Other dimensions can be accommodated. A first point worth discussing is whether
the valuation of processes should return the best-case scenario, as done in our current
framework, or should instead return the worst-case scenario, thus following a rather
traditional, pessimistic approach to security. If the C-semiring is equipped with a sub-
traction operation, i.e., an inverse to the addition operation, then such a valuation can
be calculated as the subtraction of all the weights of the traces. For instance, in the
boolean semiring, subtraction corresponds to conjunction, and it is easy to see that the
valuation of a process would be true only if all traces evaluate to true. Similarly, sub-
traction in the cost semiring corresponds to max ; in this case the valuation would return
the highest possible cost. However, not all semirings have a subtraction operation. We
will investigate this problem in future work.

As discussed at the end of Section 5, some controllers are incomparable. In some
cases, it might be desirable to try to compare them nonetheless. A first step is to con-
sider a single target when comparing two controllers, although, as said above, only the
best-case scenarios are compared, which might not be fine-grained enough. One could
however associate a weight to each target, and compose this weight with the valuation
of each controller for each considered target. For instance, if we can define the probabil-
ity of each target, and the valuation returns the energy spent by the controlled process,
then it is possible to obtain the expected amount of energy spent by each controller. The
expectation semiring [17] can be used in this process.

It is noteworthy that, given any two processesA andB, we have JAK v JA+BK, for
any measured quantity. Indeed, the best case ofA+B is necessarily better than the best
case ofA. In practice, given two controllersE1 andE2, JE1.F K v J(E1+E2).F K, for
any target F . In other words, adding non-deterministic choice to the controller itself al-
ways improves security. Clearly, this characteristic is mostly of theoretical importance,
but it raises the interesting question whether, given some quantities, there exists a deter-
ministic maximal controller or not. For instance, given any safety property, we can build
an optimal deterministic controller if we only monitor security. However, if we add a

notion of cost as in Example 8, we have two incomparable deterministic controllers,
which are strictly worse than their non-deterministic composition. It would therefore
be interesting to study the class of quantities that are enforceable by a deterministic
enforceable controller against those for which only a non-deterministic controller is
optimal, in a way loosely similar to the difference between the classes P and NP in
computational complexity. Finally, our notion of a security policy is just a set of finite
traces that a process is allowed to use. This set could be specified by e.g. automata or
logics. Predicates, and formulas specifying them, could also be quantitative by them-
selves, e.g. employing logics with valuations in a C-semiring (see e.g. [18,10]). In this
paper, we do not yet investigate this aspect of the framework; this is left as future work.
In particular, we plan to use quantitative evaluation of security policies, specified by
logic formulas, in order to extend previous work on automated verification and synthe-
sis of (qualitative) controllers [21].

References

1. D. Basin, V. Jugé, F. Klaedtke, and E. Zălinescu. Enforceable security policies revisited. In
Proceedings of POST, volume 7215 of LNCS, pages 309–328. Springer-Verlag, 2012.

2. L. Bauer, J. Ligatti, and D. Walker. Edit automata: Enforcement mechanisms for run-time
security policies. International Journal of Information Security, 4(1–2), 2005.

3. N. Bielova and F. Massacci. Predictability of enforcement. In Proceedings of the Interna-
tional Symposium on Engineering Secure Software and Systems 2011, volume 6542, pages
73–86. Springer, 2011.

4. S. Bistarelli. Semirings for Soft Constraint Solving and Programming, volume 2962 of
LNCS. Springer, 2004.

5. S. Bistarelli, S. N. Foley, B. O’Sullivan, and F. Santini. Semiring-based frameworks for
trust propagation in small-world networks and coalition formation criteria. Security and
Communication Networks, 3(6):595–610, 2010.

6. S. Bistarelli, F. Martinelli, and F. Santini. A semiring-based framework for the deduc-
tion/abduction reasoning in access control with weighted credentials. Computers & Mathe-
matics with Applications, 64(4):447–462, 2012.

7. P. Buchholz and P. Kemper. Quantifying the dynamic behavior of process algebras. In Pro-
ceedings of the Joint International Workshop on Process Algebra and Probabilistic Methods,
Performance Modeling and Verification, PAPM-PROBMIV ’01, pages 184–199. Springer-
Verlag, 2001.

8. G. Caravagna, G. Costa, and G. Pardini. Lazy security controllers. In Security and Trust
Management, STM’12, 2012. to appear.

9. P.-C. Cheng, P. Rohatgi, C. Keser, P. A. Karger, G. M. Wagner, and A. S. Reninger. Fuzzy
multi-level security: An experiment on quantified risk-adaptive access control. In Proceed-
ings of the 2007 IEEE S&P, pages 222–230. IEEE Computer Society, 2007.

10. V. Ciancia and G. L. Ferrari. Co-algebraic models for quantitative spatial logics. ENTCS,
190(3):43–58, 2007.

11. P. Drábik, F. Martinelli, and C. Morisset. Cost-aware runtime enforcement of security poli-
cies. In Security and Trust Management, STM’12, 2012. to appear.

12. P. Drábik, F. Martinelli, and C. Morisset. A quantitative approach for inexact enforcement
of security policies. In Proceedings of the 15th international conference on Information
Security, ISC’12, pages 306–321. Springer-Verlag, 2012.

13. M. Droste and P. Gastin. Weighted automata and weighted logics. In In Automata, Languages
and Programming, 32nd International Colloquium, ICALP 2005, pages 513–525. Springer-
Verlag, 2005.

14. A. Easwaran, S. Kannan, and I. Lee. Optimal control of software ensuring safety and func-
tionality. Technical Report MS-CIS-05-20, University of Pennsylvania, 2005.

15. R. Gay, H. Mantel, and B. Sprick. Service automata. In Proceedings of the 8th International
Workshop on Formal Aspects of Security and Trust (FAST), LNCS 7140, pages 148–163.
Springer, 2012.

16. M. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification of probabilistic real-
time systems. In G. Gopalakrishnan and S. Qadeer, editors, Proc. 23rd International Con-
ference on Computer Aided Verification (CAV’11), volume 6806 of LNCS, pages 585–591.
Springer, 2011.

17. Z. Li and J. Eisner. First- and second-order expectation semirings with applications to
minimum-risk training on translation forests. In EMNLP, pages 40–51, 2009.

18. A. Lluch-Lafuente and U. Montanari. Quantitative mu-calculus and ctl defined over con-
straint semirings. TCS, 346(1):135–160, 2005.

19. F. Martinelli and I. Matteucci. Partial model checking, process algebra operators and sat-
isfiability procedures for (automatically) enforcing security properties. Technical report,
IIT-CNR, 2005.

20. F. Martinelli and I. Matteucci. Through modeling to synthesis of security automata. ENTCS,
179, 2007.

21. F. Martinelli and I. Matteucci. A framework for automatic generation of security controller.
Softw. Test. Verif. Reliab., 22(8):563–582, Dec. 2012.

22. F. Martinelli, I. Matteucci, and C. Morisset. From qualitative to quantitative enforcement of
security policy. In Proceedings of MMM-ACNS’12, pages 22–35. Springer-Verlag, 2012.

23. F. Martinelli and C. Morisset. Quantitative access control with partially-observable markov
decision processes. In Proceedings of CODASPY ’12, pages 169–180. ACM, 2012.

24. R. Milner. Communication and concurrency. PHI Series in computer science. Prentice Hall,
1989.

25. I. Molloy, P.-C. Cheng, and P. Rohatgi. Trading in risk: using markets to improve access
control. In Proceedings of the 2008 workshop on New security paradigms, NSPW ’08, pages
107–125. ACM, 2008.

26. I. Molloy, L. Dickens, C. Morisset, P.-C. Cheng, J. Lobo, and A. Russo. Risk-based security
decisions under uncertainty. In Proceedings of the second ACM conference on Data and
Application Security and Privacy, CODASPY ’12, pages 157–168. ACM, 2012.

27. B. Roark, R. Sproat, and I. Shafran. Lexicographic semirings for exact automata encoding
of sequence models. In Proceedings of the 49th Annual Meeting of the Association for
Computational Linguistics: Human Language Technologies: short papers - Volume 2, HLT
’11, pages 1–5, Stroudsburg, PA, USA, 2011. Association for Computational Linguistics.

28. P. Ryan, S. Schneider, M. Goldsmith, G. Lowe, and A. Roscoe. Modelling and Analysis of
Security Protocols. Addison-Wesley Publishing Co., 2000.

29. F. B. Schneider. Enforceable security policies. ACM Transactions on Information and System
Security, 3(1):30–50, 2000.

30. L. Zhang, A. Brodsky, and S. Jajodia. Toward Information Sharing: Benefit And Risk Access
Control (BARAC). Proceedings of POLICY’06, pages 45–53, 2006.

